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Abstract

In recent years, much thought has been given to the use of small satellite clus-

ters with distributed sensors to provide large virtual apertures, which have significant

weight and packaging efficiencies. One proposed method to maintain the formation

shape is with the use of tethers. This dissertation assesses the utility of tethered

satellite formations for the space-based remote sensing mission. The research objec-

tives are to determine the effects of energy dissipation on the foundational rigid body

dynamics, find equilibrium conditions, apply controls, and assess the relative utility

of tethers for formation control on continuously earth-facing aperture clusters.

Energy dissipation is found to have a long-term destabilizing effect on prolate

bodies that start in certain (Likins-Pringle) equilibria, while oblate bodies in the same

equilibria suffer only short-term destabilization from energy dissipation before settling

into a near-limit cycle. Consequently, oblate ring formations are exclusively chosen

for the multi-body system.

It is shown that a continuously earth-facing equilibrium condition for a fixed-

length tethered system does not exist since the spin rate required for the proper

precession would not be high enough to maintain tether tension. The range of re-

quired spin rates for steady-spin motion is numerically defined here, but none of these

conditions can meet the continuously earth-facing criteria. Of particular note is the

discovery that applying certain rigid body conditions to a free-flying formation creates

the desired equilibrium condition.

Control methods applied to the tethered system fail to maintain formation ori-

entation or are cost prohibitive. The overall assessment is that tethers have great

value for general formations, however, by themselves tethers cannot conduct forma-

tion control for continuously earth-facing aperture clusters. Even with additional

controls, the utility of tethers for this mission is limited.
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î ~R⊕ position from inertial frame origin to system CoM . . . . . 78

ri relative position vectors with respect to CoM . . . . . . . 78

li tether length from CoM for mi . . . . . . . . . . . . . . . 78
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Dynamics and Control of Tethered

Satellite Formations for the Purpose of

Space-Based Remote Sensing

I. Introduction

Surveillance and imaging of earth objects from space is of particular interest to the

U.S. Air Force and the Department of Defense. In an effort to develop and operate

unique and innovative space systems the U.S. military has given consideration to the

concept of satellite formations, whose shape can be managed by thrusters, tethers,

and/or natural dynamic forces. This research is intended to investigate the dynamics

and explore methods of control for tethered satellite formations in order to assess the

utility of such formations for the particular mission of space-based remote sensing.

1.1 Spaced-Based Formations

Because the mission of interest is space-based, program managers want to in-

crease the aperture of the sensor platform yet decrease launch costs. To decrease

launch costs, the spacecraft needs to be small and lightweight. Unfortunately, a

single small and lightweight spacecraft is inconsistent with the objective of a large

aperture sensor. However, using a formation of these smaller satellites operating in

relatively close proximity, space-based remote sensing can be enhanced. A cluster of

small satellites with distributed sensors can provide a large overall virtual aperture

while also decreasing overall system size and weight. The bulk of this present research

presumes that the portion of the satellite cluster that forms the virtual aperture is

distributed in a “ring” or circular formation to most closely simulate a single large

aperture, and therefore create the best observation plane for the mission.

Satellite formations in general have been of particular interest in recent years

[7, 11, 54, 57, 61]. The general problem for free-flying satellite clusters is that each

spacecraft in the cluster is in a slightly different orbit about the parent body (such

1
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as the earth), therefore the satellites have a natural relative motion with respect to

each other. This natural relative motion is further complicated by the presence of

perturbations. The challenge then becomes stationkeeping to maintain the relative

shape of the cluster.

1.2 Tethered Systems

Many research efforts have investigated the use of thrusters to maintain guid-

ance and control of such clusters, however thruster propulsion is a non-renewable

resource, and as such limits mission lifetime. Alternatively, some research has in-

vestigated the feasibility of using tethers under tension to maintain the shape of the

satellite formation [26,77]. A tether is simply a length of high-strength fibers or wires

(typically only a couple of millimeters in diameter) that can be used to couple space-

craft together (see Figure 1.1). The basic idea is that positive tether tension can be

maintained from the centrifugal forces caused by system rotation. Additionally, one

could control the tension in the tethers by reeling in or paying out tether length be-

tween the various bodies. Using tethers could minimize or eliminate the dependence

on reaction thrusters for stationkeeping, thus extending mission life.

Figure 1.1: Space Tether Example from TSS-1R Mission [1]

2
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1.3 Remote Sensing Mission

To perform the mission of remote sensing of earth objects, the satellite formation

would optimally have a continuous earth-facing component. That is, a projection onto

the earth of the virtual aperture created by the “ring” formation must remain fairly

constant. Limited research has been accomplished for this particular application of

tethered satellite formations, but one of the key contributions was Tragesser [66]. He

noted a stability condition for axisymmetrc rigid bodies called the conical Likins-

Pringle equilibrium [20] behaves precisely as described above: a component of its spin

axis is always “facing” the earth (nadir) from a circular orbit. Tragesser proposed

that one might find a tethered system equilibrium condition that is comparable to

a conical Likins-Pringle equilibrium. This concept was applied for both oblate [66]

and prolate [67,69,78] formations, but the majority (and most recent) work has been

focused on prolate, double-tetrahedron formations. To date, no one has found a

conclusively long-term stable condition for an earth-facing tethered system.

1.4 Research Goals

The hypothesis of this research is that tethers can reduce or eliminate the cost

of formation control and combat perturbing forces for the space-based remote sensing

mission by passively maintaining semi-rigid behavior through tension. The overarch-

ing goal of this research is to evaluate the relative utility of tethered satellite systems

for continuously earth-facing aperture clusters. To perform this evaluation, several

specific research objectives are undertaken in a build-up fashion. As mentioned above,

no one has found a conclusively long-term stable condition for an earth-facing teth-

ered system. It is possible that long-term stability in Likins-Pringle is not feasible due

to the equivalent dynamic effects akin to energy dissipation on a rigid body. Hence,

the starting point of this research is to assess the effects of energy dissipation on the

Likins-Pringle equilibria for rigid bodies. The remaining rationale behind each of the

five objectives is detailed in the next chapter.

3
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Objective 1: Determine Effects of Energy Dissipation: Determine the

effects of energy dissipation on semi-rigid bodies that are in/near Likins-Pringle dy-

namic equilibria.

Objective 2: Find an Equilibrium Condition – Semi-Rigid Body: De-

fine and/or determine the existence of an equilibrium condition (EC) for a semi-rigid

body with a continuous earth-facing component in the presence of energy dissipation.

Objective 3: Find an Equilibrium Condition – Tethered System: De-

fine and/or determine the existence of an equilibrium condition for a flexible tethered

satellite system with a continuous earth-facing component.

Objective 4: Apply Controls: Apply control schemes to the tethered system

to combat perturbations and maintain desired motion.

Objective 5: Assess Utility: Assess the relative utility of using tethered

systems for formation control on continuously earth-facing aperture clusters.

1.5 Chapter Outline

The historical development and rationale for these specific objectives is covered

in more detail in Chapter II. The methodology roadmap and overview for the current

research is discussed in Chapter III. With Chapter III serving as a research outline,

Chapters IV-VII delve into the specifics of each phase. Chapter IV is a presenta-

tion of the rigid body work, while Chapter V covers the tethered systems dynamics.

The application of various control schemes to the tethered systems is discussed in

Chapter VI. Chapter VII serves as an assessment on the utility of tethered systems

for conducting space-based remote sensing. Finally, Chapter VIII reviews the objec-

tives, discusses recommendations, and highlights the contributions of this research to

academia, the remote sensing mission, and the Department of Defense.
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II. Historical Development for Research in Tethered

Formations

The study of tethered satellite systems spans multiple decades and hundreds of

authors. This chapter presents an overview of previous work from the pertinent

areas of this research, such as tethered system dynamics and tether modeling. Each

area of research is broken out into a separate section. Figure 2.1 shows a flow diagram

of how each research area ties to the next. The arrows denote what research areas

are required at each level to accomplish the previous level. The numbered research

objectives for this work are shown next to their corresponding areas and will be

highlighted throughout this chapter, although they do not appear in sequential order.

Mission:

Space-Based Remote Sensing

Satellite

Formation

Formation

Deployment/Retrieval
Formation

Station-keeping

Thrusters Only

(cost) Tethers

(cost)

Control

Tethered System

Dynamics Model

Tether

Model

System

Attitude

Dynamics

Energy

Dissipation

Effects

• Initial Conditions

• Spin Rates

• Altitude Choice

• # of satellites

• Configuration

Assumed Mission Reqmts

(Continuous Earth Facing Aperture)

discrete/continuous

mass/massless

elastic/inelastic

VS.

5

4

3
*

* a concept with an equilibrium condition

would minimize the control

b
ey

o
n
d

sc
o
p
e

# = Research objective number
Rigid Body

Attitude

Dynamics

Likins-Pringle

1
2

Relative Utility

- Reject Perturbations

- Maintain desired motion

Figure 2.1: Research Area Flowchart
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2.1 Tethered System Dynamics

2.1.1 General Tethered Systems.

As early as the 1960’s, researchers have investigated the dynamics of tethered

systems [2, 4, 9, 27, 49]. Over the years, the concepts and configurations have ranged

from single satellites with flexible appendages to constellations of small satellites with

multiple tethers connecting each object [5, 12]. Examples of the various applications

and benefits of tethered systems include: momentum/orbit transfer, attitude control,

artificial gravity, atmospheric measurements, electrodynamics, and space interferom-

etry.

The most common research in tethered system dynamics and control, especially

in the 1980’s, involved 2-body/1-tether systems, where gravity-gradient forces cre-

ate a nadir pointing system equilibrium [14, 35, 38, 39]. By comparison, a relatively

small amount of research has been accomplished for multiple body/multiple tether

formations, as summarized in Williams [77] and Kumar [26].

In 1987, Misra, Amier, and Modi [33] studied the dynamics of tether-connected

three-body systems in a circular orbit for both constant and variable length tethers.

Their study was confined to a double pendulum arrangement with motion limited to

the orbit plane. They found four equilibrium conditions, where the in-plane orien-

tation with respect to an orbiting reference frame is fixed, but they assumed mass-

less tethers. The four equilibrium configurations are shown in Figure 2.2. Two are

collinear while two lie in a triangular formation.

Several years later, Misra and Modi [36] expanded their study to three dimen-

sions and considered N-bodies connected by N-1 tethers in a “string-of-pearls” fashion.

They noted quantifiable relationships between in-plane librations, out-of-plane libra-

tions, and orbital frequency for one of the equilibrium conditions they had found

earlier. This work was broadened further by Keshmiri, Misra, and Modi [23] in 1996.

They considered the same N-bodies/N-1 tethers for both in-plane and out-of-plane

librations but generalized the formulation to include tether mass and elasticity to
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Figure 2.2: Equilibrium Configurations of Misra et al. [33]

account for upper atmospheric perturbations. Furthermore, they found that while

damping had little effect on transverse tether oscillations, it had a significant effect

on longitudinal oscillations of the tethers. Kalantzis et al. [22] continued working

with this generalized formulation, but expanded the research by adding emphasis on

attitude and vibrational control schemes. Discussion of this work will be included in

the tether controls section of this chapter. In 2001, Misra [37] once again investigated

the four planar equilibrium configurations of the three-body tethered system in cir-

cular orbit. While the previous studies were numerical in nature, Misra took a more

analytical approach in this work and examined the stability of the four equilibrium

configurations. The vertical configuration was found to be Lyapunov (marginally)

stable while the triangular configurations were found to be unstable. Lyapunov sta-

ble meant that small perturbations from the equilibrium condition would result in

oscillatory behavior in the neighborhood of the equilibrium. Asymptotic stability was

not found for these equilibria.
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Pizarro-Chong and Misra [47] studied the dynamics and stability of spinning

N-body tethered systems in low earth orbit, but they looked at two new kinds of con-

figurations: 1) hub-and-spoke (H-A-S); and 2) closed hub-and-spoke (C-H-A-S). The

hub-and-spoke formation involved a central body with individual satellites tethered

independently to it. The closed hub-and-spoke formation included the same system

as the normal hub-and-spoke but each of the peripheral satellites were also connected

to each other in a “ring” using outer tethers. They found that for up to four bodies,

the hub-and-spoke configurations were stable (asymptotic or Lyapunov) assuming an

initial spin rate and massless, yet elastic tethers. Above four bodies, outer tethers

(C-H-A-S) were required for stability. Their work was limited, however, to very high

spin rates (10-30 times the orbit rate) and two specific system orientations (orbit

plane and normal to orbit plane), neither of which can remain earth facing.

2.1.2 Inertially-Fixed Systems.

One of the emerging concepts for tethered constellations is interferometry. Gen-

erally speaking, a spinning constellation of tethered satellites will tend to keep its

spin axis inertially fixed, lending itself nicely to astronomical observation missions.

With this in mind, Quinn and Folta [52] proposed a mission concept called the Sub-

millimeter Probe of the Evolution of Cosmic Structure (SPECS), which would be a

tethered constellation located at the Sun-Earth L2 Lagrange point. Their proposed

hub-and-spoke configuration, called SPECS HEX, employed three 600 meter long

tethers, each with a mirrored subaperture on one end, and a ballast on the other (see

Fig. 2.3). The ballasts reel-in and reel-out in the opposite direction of the subaper-

tures to keep a constant system spin rate should the subapertures need to be moved

in or out.

Farley and Quinn [18] performed further operational evaluations of the SPECS

HEX concept as well as an additional configuration they called the SPECS Tetra-

Star. The Tetra-Star configuration also uses three subapertures and three ballasts,
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Figure 2.3: SPECS-HEX Configuration [52]

but makes use of nine tethers in triangular formations to give the system more in-plane

shape rigidity (see Fig. 2.4).

Sub-Apertures

Counter Mass

Constant Length

Tether

Variable Length Tether

Spiral Sampling Path

Figure 2.4: SPECS-Tetra-Star Configuration [18]

Recently, Kim and Hall studied the dynamics and control of multiple point

masses interconnected by multiple idealized tethers as applied to the SPECS mission.

Particular attention was paid to the symmetrical triangular scenario of three masses

and three tethers. They evaluated relative equilibria and designed controllers to

meet specific SPECS mission scenarios [25]. Similarly, they evaluated the Tetra-Star

configuration and compared the utility of Tetra-Star to the triangular formation. They

found that the complexity of Tetra-Star made it less controllable and less stabilizable

than the basic triangle, especially for plane changes [24].
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In 2001, Marco Quadrelli built a numerical simulation environment for studying

the dynamics and control of tethered formations. His model was capable of including

N spacecraft, three-dimensional elastic tethers, and thermal perturbations. Using his

model, Quadrelli developed simulations for three different tethered configurations: a

two-spacecraft system; a three-spacecraft/two-tether “string of pearls” system; and a

four-spacecraft/three-tether “hub-and-spoke” system [50]. Quadrelli’s work supported

both the heliocentric astronomical observation missions as well as the low earth orbit

(LEO) interferometry missions.

Misra et al. [34] considered the planar motion of a two-satellite tethered system

in the vicinity of the Earth-Moon Lagrangian points. They found that the librational

frequencies of the tether are approximately 4n at L1, 3n at L2, and
√

3n at all other

Lagrangian points, where n is the lunar mean motion.

Around the same time as the previous two works, Bombardelli et al. [6] took

a closer look at a specific tethered space interferometer concept. They analyzed the

pointing dynamics of a three-body “string-of-pearls” in an earth-following, heliocen-

tric orbit. Particular attention was paid to the influence of environmental perturba-

tions. Solar radiation pressure and thermal variations were found to the dominant

perturbations. The former affect causes lateral oscillations of the system, while the

latter causes cyclic variations in tether length. They also made recommendations

regarding tether material properties.

In 1989, Decou [16] performed a detailed analysis of the static shape of finite

mass tethers in a rotating triangular system of three-spacecraft/three-tethers. This

work is detailed further in the Tether Modeling section, and provides the initial look

at calculating the dynamic response of the same system in the presence of perturbing

dynamic forces, such as gravity gradient, solar radiation pressure, and atmospheric

drag. Decou also studied the specific effects of gravity gradient forces on the rotation

rate and out-of-plane motion for three-body, triangular, spinning tethered systems [15]

and applied this to a geocentric astronomical observation mission [13]. He assumed
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massless, fixed-length tethers and assumed the rotation rate of the tethered system

would be significantly higher than the orbital rate of the system. The result was an

inertially fixed spin axis for the triangular system.

2.1.3 Earth-Facing Systems.

The study of inertially-fixed, astronomical systems above leads to another natu-

ral application of spaced-based interferometry: remote sensing, or earth observation,

from geocentric orbit. However, to perform earth observations from a nearby orbit,

different attitude dynamics of the system must be created. Keeping a system’s spin

axis inertially fixed works well for the interferometry missions that observe long dis-

tant astronomical phenomenon, but in the case of remote sensing, the tethered system

would need to continuously change its orientation such that the formation of sensors

would constantly “face” the earth.

The most inexpensive way to accomplish this constant geocentric attitude ma-

neuver is to find a stable relative equilibrium condition that balances all the dynamic

forces in the orbit’s rotating reference frame such that the system’s attitude changes

at approximately the same rate as the orbital rate. This is defined in one of the

research objectives, which is restated below:

Research Objective 3 (and 2): Define and/or determine the existence of an

equilibrium condition for a flexible tethered satellite system (and semi-rigid body) with

a continuous earth-facing component.

Obviously, finding the equilibrium condition is dependent on the specific teth-

ered formation geometry that is chosen. For example, some researchers tackled this

problem by letting gravity gradient forces stabilize a single tether in a nadir direc-

tion [14,38,39]. The equilibrium condition for this relatively simple geometry is easy

to see. Unfortunately, single tether geometries will presumably not create the desired

apertures required for many earth observation missions.
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Rotating ring formations, on the other hand, are assumed to create better ob-

servation planes, but an equilibrium condition needs to be found such that the spin

axis of the formation rotates with the system’s orbit, ensuring the relative spin axis

always has a component along the nadir direction. A comparitively small amount

of research has been dedicated to this particular kind of tethered dynamics prob-

lem [26, 66, 67, 69, 78], however it is the foundation of this present work, so it is

detailed in the remainder of this section.

In 2000, Tragesser [66] investigated the motion of a three-body, planar, tethered

ring formation, much like Decou. Tragesser’s primary differences from Decou were:

1) Tragesser also considered the more general N-body ring formation; and 2) the spin

rate of the Tragesser’s ring formation was much slower than Decou’s, allowing the

spin axis to vary in inertial space. Tragesser advanced the idea of finding a relative

equilibrium condition for an N-body ring formation by first looking at the stable

equilibria of an axially-symmetric spinning rigid body in a circular orbit. These rigid

body equilibria are divided into three classes: cylindrical, hyperbolic, and conical [20].

Each was named for the relative three-dimensional shape created by the motion of

the spin axis during the orbit (shown in Figure 2.5). The cylindrical case is also

known as the Thomson equilibrium [65], where the spin axis is perpendicular to the

orbit plane and the gravitational torque disappears. The latter two are called Likins-

Pringle equilibria where the gravitational torques cause the rigid body to precess at

the same rate as the orbital rate.

Tragesser modeled his three-body ring formation with the assumption that the

spin tension would “rigidize” the system, thus closely emulate the rigid body and

obey the same relative equilibria. He performed numerical simulations for both the

cylindrical and conical cases, but the conical case is the only one that offers a com-

ponent of the spin axis in the nadir direction. That is, the conical case is the only

one that allows the ring formation to project an ellipsoid on the earth’s surface for

the application of remote sensing.
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Figure 2.5: Types of Relative Equilibrium for an Axisymmetric Spinning Satellite
in Circular Orbit [20]

He modeled the flexible tethers as discrete masses, and started each simulation

with the tethers perfectly straight on each side of the triangular formation, letting

them bow out over the course of the simulation as shown in Figure 2.6.

Tragesser concluded that tether flexibility introduces unstable modes in the

rigid-body equilibria. For the cylindrical case, two relative spin rates were used: 0.5n

and 5n, where n is the orbital rate. When the spin rate was 0.5n, the system was

not stable. When spun at the higher rate, however, the system behaved similarly to

a rigid body. For the conical case, none of the attempted spin rates produced stable

results, unless tether flexibility was removed.

Most recently, Kumar and Yasaka [26] investigated the cylindrical case of the

three-body/three-tether triangular system and found that the spin rate required for
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Initial Formation Bowed-out Tethers

tether nodes

satellite body

Figure 2.6: Lumped Mass Tether Bowing

system steady-spin motion in the orbital plane was greater than 0.58n or less than

−2.58n. In later chapters, this range of values (−2.58n to 0.58n) is referred to as

the “Kumar Range”. Their analysis included massless, elastic tethers and considered

elliptical orbits as well.

In 2002, Williams and Moore [78] investigated two different tethered configu-

rations, each with a different technique for producing the necessary, non-propulsive

torque required to keep the formation earth-facing. They assumed massless tethers

that remain straight for both configurations. The first configuration was a planar ring

similar to Decou and Tragesser, with the added notion of using conductive tethers

and geomagnetic interaction to produce the required torque. They concluded that the

current and power requirements for such electromagnetic torquing would likely be too

prohibitive for large scale tethered systems. The second configuration considered by

Williams and Moore was a three-dimensional double-pyramid geometry of four ring

satellites, two anchor masses, four ring tethers, eight diagonal tethers and a single

“spine” tether as shown in Figure 2.7.

The idea for this double-pyramid configuration was to use gravity gradient forces

acting on the anchor masses to stabilize the spin axis along nadir. Williams and Moore

explored various combinations of values for spin rate and fraction of gravity gradient

tension carried by the spine and proposed a stability region with those parameters as

variables. They found that tether tension, while growing over two system rotations,
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Figure 2.7: Double Pyramid Configuration

stayed small and positive. They also observed that spin rates less than 1.33n produced

unstable results, and they reported that spin rates higher than 4.36n would produce

stable behavior without a spine tether. In addition, they determined that stablility

was also tied to geometric parameters of the formation, such as height-to-width and

mass ratios.

A short time later, Tragesser and Tuncay [67, 69] applied the double-pyramid

idea to Tragesser’s original concept of using the Likins-Pringle equilibria. Their new

configuration was a double tetrahedron with three ring satellites, two anchor masses,

three ring tethers, and six diagonal tethers – basically, the double-pyramid with one

less ring satellite and no central spine tether (see Figure 2.8). As with Tragesser’s

first study, they investigated the stability of such a formation when placed in the off-

nadir, earth-facing orientation created by the Likins-Pringle conical equilibria. They

included flexibility of the tethers in their model using discrete, lumped masses.
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Figure 2.8: Double Tetrahedron Configuration

The main design parameters for the formation were: height, diameter, spin rate,

and mass ratio. They ran simulations for ten orbits and plotted the positions of the

masses and tether elements with respect to a rotating orbital frame, ô. Figure 2.9

shows typical results of their simulations. The oscillations in the tether elements

are due to the tethers starting perfectly straight yet bowing outward during system

rotation [16].

The numerical results of Tragesser and Tuncay demonstrated that such a for-

mation could hold a ‘stable’ orientation toward the earth in the short term (i.e. for

a number of orbits) before controls would need to be applied. However, all of the

configurations they analyzed eventually diverged, meaning they had not yet found an

equilibrium condition that was Lyupanov stable. Even so, they did recognize that

some configurations were more stable than others and they illustrated stability re-

gions of their main formation parameters, namely formation dimensions, mass ratios

and spin rates.
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a) b)

Figure 2.9: Double Tetrahedron Simulation: a)after 1 orbit b)after 10 orbits [67]

One of the hypotheses of this present research is that the “prolated-ness” of the

above three-dimensional configurations creates a double-edge sword. For example, in

rigid body dynamics, a prolate object takes advantage of gravity gradient torques to

keep the long axis pointed earth-ward, but a prolate object also has a tendency to

migrate away from spin about its minor axis when subjected to energy dissipation [75].

The presumption is that flexible/elastic tethers introduce energy dissipation on the

system and might therefore explain why Tragesser and Tuncay were unable to find

long term stability for their prolate formation. It is important then, to try and

understand the effects of energy dissipation on the Likins-Pringle dynamic equilibria

when attempting to find a new equilibrium condition. This is formulated in the first

research objective, repeated below:

Research Objective 1: Determine the effects of energy dissipation on semi-

rigid bodies that are in/near Likins-Pringle dynamic equilibria.

2.2 Semi-Rigid Body Dynamics

As mentioned in the last section, the study of rigid and semi-rigid body dynamics

could give great insight into finding a dynamic equilibrium condition for a tethered

system. To that end, this section highlights what has been accomplished in the

pertinent areas of stability dynamics of axisymmetric (semi-)rigid bodies. A Venn

17



www.manaraa.com

diagram is included in Figure 2.10 to help illustrate how the different areas of research

interconnect.
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Figure 2.10: Existing Research on Stability Dynamics of Axisymmetric Bodies

In effect, this research couples two formerly independent areas of study: torque-

free energy dissipation effects and dynamic equilibria in the presence of particular

torques. There has been plenty of research done in both areas independently but

virtually nothing that combines the two (that is, energy dissipation effects on a torque-

induced equilibrium condition).

2.2.1 Rigid Body Equilibrium Conditions (with Torques Present).

A large body of work exists that discusses the stability dynamics of axisymmetric

bodies in the presence of gravity gradient torques. This area is represented by the

orange section of the Venn diagram in Figure 2.10. These works date back as far as

the 1960’s [29, 40, 53, 63, 64] and were expanded on by various authors over the next

several decades [45, 59, 72], but Hughes [20] was the one key piece of literature that

outlined and summarized the three classes of relative equilibria of a spinning, axially-

symmetric, rigid body under the influence of gravity gradient torques in a circular
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orbit. As noted in the previous section, these three classes of relative equilibria are:

cylindrical, hyperbolic, and conical. Of these, the conical case is the only one that is

useful to the earth-facing application of remote sensing, so it will of primary interest

in this present research.

2.2.2 Energy Dissipation (Torque Free).

A discussion of the effects of energy dissipation on a semi-rigid body in a torque-

free environment can be found in almost any text on rigid body dynamics [20,60,74,

75]. The two key concepts involved are the Energy Sink Hypothesis and the Major

Axis Rule.

The Energy Sink Hypothesis states that “during the motion of any real body

the kinetic energy will tend to be converted – slowly – to heat energy [20].” In the

case of truly semi-rigid bodies, like those with flexible booms or sloshing fuel tanks,

the loss of kinetic energy due to internal motion is easily understood.

The Major Axis Rule as surmised by Sidi [60] says that “in the presence of

energy dissipation, a spinning body is in stable angular motion only if the spin is

about the major axis.” Wiesel [75] further states that for the axisymmetric case,

“pure spin about the symmetry axis is stable only if the symmetry axis is the major

axis. Prolate semi-rigid bodies will eventually achieve an end-over-end tumble state.”

This could be an important point in the context of the prolate three-dimensional

tethered formations that were previously considered.

Multiple authors have investigated the attitude stability of semi-rigid bodies

and have derived stability criteria using Liapunov’s second method [21] as well as the

method of averaging [68]. Along the way, it has been noted that semi-rigid bodies

carry with them certain caveats to conventional theory. For example, Hughes and

Fung [21] found that for spinning satellites with long flexible appendages, the Major

Axis Rule is a necessary, but not sufficient condition for stability. However, they went

on to derive the necessary conditions and showed that flexible booms could be used

to stabilize an unstable central body.
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2.2.3 Energy Dissipation (with Torques Present).

By comparison, very little study has been devoted to energy dissipation effects

in the presence of external torques (represented by the left side of the pink section of

the Venn diagram on Figure 2.10).

One of these few pieces of work was done by Livneh and Wie [31], who studied

the effects of energy dissipation on a rigid body under the influence of constant body-

fixed torques about either the major, intermediate, or minor axis. Their conclusions,

based on numerical simulations, were: “(i) torque about the major resulted in a

spin up maneuver in the torque direction, (ii) for torque about either the minor or

the intermediate axis the spacecraft ended up rotating about an equilibrium point

with large angular velocity component about the major axis, (iii) the polarity of the

final equilibrium point is sensitive to initial conditions and also tends to converge to

the nearest branch of the corresponding hyperbola of equilibrium points, and (iv) a

constant minor axis torque might result in a flare up in angular velocity about this

axis before converging to an equilibrium point with large angular velocity component

about the major axis [31].” Their research differs from this present work since our

external torques of interest (gravity gradient) are not body-fixed.

2.2.4 Energy Dissipation (with Specific Gravity Gradient Torques).

As of this writing, no research has been found on the study of energy dissipation

effects on a semi-rigid body under the influence of gravity gradient torques when

placed in one of the Likins-Pringle stability equilibria. This is the green hashed area

of the Venn diagram in Figure 2.10 (Research Objective 1).

2.3 Tether Modeling

A major consideration in the development of a tethered system model is how to

model the tethers themselves. Figure 2.11 shows three main factors to consider when

deciding how to represent the behavior of the tethers: elastic vs inelastic (assume they
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stretch?), massless vs flexible (assume they bow out?), discrete mass vs continuous

mass (simplifying solution).

1
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Figure 2.11: Tether Modeling Factors

The body of work in tethered systems to date covers all combinations of these

factors (i.e. all areas in Figure 2.11 have been explored), but the majority of authors

assumed massless, inextensible tethers (quadrant 1) [15, 24, 25, 33, 36, 37, 77]. Others

kept their tethers as massless, but allowed for the elasticity (quadrant 2) [26,47].

Very few individuals would consider modeling tethers in quadrant 3, since it

would seem that flexibility and elasticity go hand-in-hand. Fortunately, Decou didn’t

see it that way. As a result, his work isolated the static shape of a tether with finite

mass density under the influence of the centrifugal forces caused by rotation without

the added complexity of elasticity or any disturbing dynamic forces [16]. Decou

considered two cases: 1) three equal masses and three equal tethers (Fig. 2.12a); 2)

three more equal masses added to the first formation midway between the original

masses (Fig. 2.12b).
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Figure 2.12: Decou’s Static Tether Shape Cases [16]
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Decou was able to identify two boundary conditions and a third constraint that

must be satisfied for the static solution [16]. His solution to the statics problem

became a foundation for studying the dynamic response of flexible tethers in the

presence of gravity gradient, solar radiation pressure, atmospheric drag, and thermal

expansion forces.

A number of studies allowed for the most detailed tether models, assuming

the tethers had both mass and elasticity (quadrant 4 of Figure 2.11) [22, 23, 66, 67,

79]. Within this family of research, most chose to discretize the tethers into an

arbitrary number of lumped masses or “beads” [5], while others tried elastic continuum

techniques to model the tethers mass [79].

The tethers modeled in this present research are assumed at first to be massless

and elastic (quadrant 2), with the intent to transition over to a discretized lumped

mass approach (quadrant 4a) similar to Tragesser and Tuncay. In their configuration,

there was a total of nine tethers: three ring tethers and six diagonal tethers. Each

tether was modeled using two additional mass elements (see Figure 2.13), each ele-

ment weighing about 1/100 of the system masses. They assumed a tether stiffness of

20N/m and a damping coefficient that was 1/1000 of the stiffness. As it turns out,

the transition to the discretized lumped mass approach becomes unnecessary, as will

be explained in Chapter V, therefore a massless/elastic tether model is used through-

out this research. Tragesser and Tuncay’s values for tether stiffness and damping

coefficient are used as the baseline.

Figure 2.13: Tragesser’s Tether Model [67]
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2.4 Formation Control Using Tethers

Once the dynamics of a full tethered satellite system is successfully modeled

and an equilibrium condition (or close to one) is found, it is desired to use some form

of control to reject various disturbances on the system and keep the system “looking”

where we want it to look.

Research Objective 4: Apply control schemes to the tethered system to combat

perturbations and maintain desired motion.

The intent of this objective is not to broaden the field of control theory, but

rather it is a necessary step for determining the relative utility of using tethers to

perform formation stationkeeping. To this end, and without knowing what kind of

control might be useful, a survey of various studies on tethered system control was

conducted.

A number of authors have done research on control theory applied to various

tethered systems. However, their specific applications typically differed from the

mission of remote sensing [13, 22, 23, 34, 36, 41, 42] and/or the scope of control was

more detailed than what this present research requires [24,25,48]. In the case of Mori

et al. [41, 42], they established a coordinated feedback control method using tether

reels, thrusters, and CMGs, however they assumed the torque created by gravity

gradient was insignificant given high relative spin rates of their system. Likewise,

Kim and Hall [24,25] made a similar assumption about the impact of gravity gradient

torques given that the SPECs mission was located at the ÃL2 Lagrangian point of the

Sun-Earth system. Essentially, their adaptive output-feedback controller was used to

control much finer detailed responses than what this current research requires.

As mentioned in a previous section, Kalantzis et al. [22] built upon the work of

Misra et al. [34,36] and Keshmiri et al. [23] by looking at attitude and vibrational con-

trol schemes on a “string-of-pearls” formation. Their analysis included thrusters and

momentum-wheels to regulate the attitude of the individual links using a non-linear

feedback linearization technique (FLT) as well as a robust linear quadratic Gaussian-
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loop transfer recovery method to control vibrations using tether reels. By comparison,

Keshmiri et al. were looking to control about much finer attitude librations than what

were encountered in this present research.

In the case of Pradhan et al. [48], controllers were designed using tether length

rate, tether tension, and offset (which is the time dependent variation of the tether

attachment point at the platform end) to simultaneously regulate the tether dynamics

as well as the platform dynamics. In this present research, attitude dynamics of the

individual platforms is not addressed.

There were also a number of authors who focused their studies on the control

laws necessary for deployment/retrieval of the tethered systems [17, 26, 28, 43, 44,

77]. Although deployment/retrieval is beyond the scope of this research (see Figure

2.1), many of the control algorithms used by these authors may prove beneficial in

deriving a control scheme for the stationkeeping of a tethered system. Kumar and

Yasaka, who investigated the cylindrical case of the three-body/three-tether triangular

system and found the spin rate required for steady-spin motion (Section 2.1.3), also

developed open-loop deployment/retrieval control laws for the tether reel rates [26].

These control laws were based on system orbit position and time allowed for system

deployment/retrieval.

Williams [77] created an FLT optimal controller for a 3-body, spinning tethered

formation with massless, inelastic tethers. He mainly demonstrated that tether length

(hence tension) control can generate enough Coriolis forces without using thrusters

to achieve the desired spin rate at the beginning and end of a deployment/retrieval.

Alternatively, Nakaya et al. [43] used actual experimental hardware and demonstrated

a 3-body tethered system deployment using a virtual structure approach control ar-

chitecture [44].

As it turns out, and as explained in Chapter VI, only the most basic control

schemes were applied in the this current work, therefore this present research does

not build upon these previous studies in the area of tethered system control.
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2.5 Formation Control Using Thrusters Only

As was illustrated on Figure 2.1, tethering satellites together is an alternative

to using thrusters alone on free-flying spacecraft to perform the formation control

(stationkeeping) task. The last, and most comprehensive, goal of this present research

is to compare the relative utility of using tethers versus using thrusters alone.

Research Objective 5: Assess the relative utility of tethered systems for for-

mation control on continuous earth-facing aperture clusters.

The previous studies related to tethered systems have been reviewed and dis-

cussed in the earlier sections of this Chapter. Once Objectives 1-4 have been ac-

complished, the performance of tethered systems for formation control will be es-

tablished. It will be necessary to compare that performance with other methods of

formationkeeping. In particular, a review of previous research in formation control

using thrusters-only is called for.

A large number of authors have studied free-flying satellite formation dynam-

ics [8, 11, 32, 56, 57, 61] and the examination of perturbation effects on thruster-only

controllers [51, 54, 58, 62, 70, 76]. The majority of this work was done in the context

of Clohessy and Wiltshire’s [10] (CW) linearized solution as a reference orbit. M.

de Queiroz et al. [51], for example, developed a Lyapunov-based, nonlinear, adaptive

control law to maintain global asymptotic position tracking errors. The basis of their

development was the CW reference dynamics.

On the other hand, Wiesel [76] took a fundamentally different approach by using

a nearly circular periodic orbit as the reference solution and applying Floquet theory

to include all zonal harmonics of the Earth’s gravity field. Wiesel found that the

accuracy of his solution was at least three orders of magnitude better than the CW

solution, and his approach was generalized to any relative satellite motion.

Another departure from the linearized CW approach was Schaub et al. [55–57],

who examined methods of determining initial conditions of satellite formations by
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forcing the mean orbit elements of each satellite to be equal. They also presented a

fuel-optimal, low-thrust, variable Isp propulsion scheme for orbit maintenance [56].

There is an entire subset of authors who focused their satellite cluster studies on

the mission of earth observation (remote sensing), that is relative motion dynamics

such that the cluster remains earth facing [11, 54, 58, 61, 62]. In 1999, both Sedwick

et al. [58] and Sabol et al. [54] investigated earth facing satellite formation designs

derived from the linearized CW dynamics solution and assessed the ∆V requirements

to overcome various perturbations to the baseline free-flight. Sedwick et al. proposed

a specific orbital configuration, characterized the perturbations, and found the total

∆V and thrust authority required to counteract them.

Sabol et al. similarly developed four formation designs and quantified the ∆V

requirements to combat a comprehensive set of perturbations. The four formations

they considered were in-plane, in-track, circular, and projected circular. Of these,

the two of particular interest to this present research are the circular (in which the

satellites maintain constant distances from each other and trace out a circular path in

the orbit frame), and the projected circular (in which the satellite paths trace out a

circular projection when seen from the Earth). These formations will be revisited in

more detail in Chapter V. The perturbations considered by Sabol et al. were Earth’s

oblateness, atmospheric drag, and tesseral resonance.

In 2000, Sparks and Yeh [61] generalized the formations described by Sabol

et al. They showed that the motion of these satellite formations can be described

as the intersection of a plane and an elliptic cylinder of eccentricity
√

3/2 fixed in

the orbit frame. The circular and projected circular formations mentioned above

are both examples of this formation family. They also discussed the general control

methods to maintain this class of satellite formations. Sparks [62] went on to develop

a robust LQR feedback controller to maintain a 1 km projected circular formation in

the presence of gravity perturbations, then assessed the amount of thruster propellent

that would be required to do so.
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For this research, these last few works (Sedwick et al., Sabol et al., and Yeh/S-

parks) provide the best data for thruster-only control requirements to compare against

the tethered system control requirements. Therefore, the pertinent details of those

studies will be covered in more detail in Chapter VII.

2.6 Tethered Spaceflights To Date

To give the reader a sense of current state-of-the-art in actual tethered systems,

this section provides an outline of the spaceflight experiments that have been flown

to date.

TSS-1 (Tethered Satellite System - 1) and TSS-1R were flown in 1992 and 1996

using the Space Shuttle Orbiter as a parent spacecraft. TSS-1 demonstrated long

distance deployment capabilities while TSS-1R validated the use of electrodynamic

tethers in space plasma physics applications. Also in the early 1990’s, the Small Ex-

pendable Deployer System (SEDS) had two successful missions. Both SEDS missions

were flown as a secondary payload from Delta-II launches of GPS satellites. The

first mission (SEDS-1) demonstrated the deorbiting capability of a tethered system.

The second mission (SEDS-2) demonstrated a closed-loop control law for deploying

a payload along the local vertical. Between the two SEDS flights, another tethered

experiment was flown as a secondary payload from a Delta II – the Plasma Motor

Generator (PMG) – which demonstrated that such a configuration could function

as act as an orbit-boosting motor or an on-orbit electricity generator. In 1996, the

Naval Research Laboratory, in cooperation with the National Reconnaissance Office

(NRO), jettisoned the Tether Physics and Survivability Spacecraft (TiPS) experiment

from a host spacecraft. The intent of this non-conducting tethered experiment was

to study the long-term libration dynamics as well as tether survivability. Finally, the

OEDIPUS (Observation of Electric-Field Distribution in the Ionospheric Plasma - a

Unique Strategy) experiments were suborbital flights on two different missions. Both

were launched and ejected from sounding rockets with the same objectives: to detect

the natural electric field and to conduct novel bistatic propagation experiments. All
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of this information was obtained from the same source [12], and confirmed through

more recent sources. An overview of these previous missions is listed in Table 2.1.

Table 2.1: Previous Tethered Spaceflights

Experiment Launched Tether Length Mission

OEDIPUS A Jan 89 958 m Suborbital Auroral Measurements
TSS-1 Jul 92 268 m Long Distance Deployment

SEDS-1 Mar 93 20.0 km De-orbit Capability
PMG Jun 93 500 m Conducting Tether

SEDS-2 Mar 94 20.0 km Closed-Loop Deployment Control
OEDIPUS C Nov 95 1.0 km Suborbital Auroral Measurements

TSS-1R Feb 96 19.7 km Electrodynamic Tether
TiPS Jun 96 4.0 km Libration Dynamics and Survivability

Note that all of these experiments were limited to formations of the two-mass/one-

tether variety. The concept of the present research involves larger formations.

2.7 Summary

This chapter presented an overview of previous work from the pertinent research

areas and highlighted the research objectives of this present study as they arose from

previous works. In the next chapter, the research objectives for this dissertation are

discussed in sequential order, along with a roadmap for the research contained herein.
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III. Roadmap for Present Research

With the background laid out from the previous chapter, it is appropriate

to review the flow of study that was conducted for this present research.

Recall the flow diagram originally shown in Figure 2.1. This chapter provides a brief

methodology roadmap to that diagram to help the reader navigate along the research

objectives, followed by an overview of the dissertation research that was accomplished.
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Figure 3.1: Research Area Flowchart
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3.1 Research Methodology Roadmap

Generally speaking, to answer the big question of tethered system utility, we

have to answer a series of smaller questions that lead up to it. How should we control

the system? What do the natural tether dynamics look like? Is there an equilibrium

condition (EC) for the tethered system? Is there an EC for a semi-rigid body that

might help us generate one with the tethered system? How does energy dissipation

effect the Likins-Pringle equilibria?

Essentially, by inverting the order of these questions, we have our sequential

research objectives. The basic approach is to build-up from semi-rigid bodies to teth-

ered systems, apply controls to those systems, then assess the cost of those controls

to the cost of thruster-only control. Therefore, we start by working with rigid body

dynamics to discern the effects of energy dissipation on Likins-Pringle equilibria con-

ditions.

Objective 1: Determine the effects of energy dissipation on semi-rigid bodies

that are in/near Likins-Pringle dynamic equilibria.

Expanding on the work from Objective 1, we attempt to find a new equilibrium

condition by first working with semi-rigid body attitude dynamics, then applying it

to the tethered system attitude dynamics.

Since the term “equilibrium condition” will be used often in the research, it is

important to define what we mean by this. For the purpose of this work, a “perfect”

equilibrium condition would be a dynamic state where the nadir projection of the

aperture remains unchanged with respect to a frame that rotates with the orbit. For

a spinning aperture, this would mean the spin axis would be completely fixed in

a rotating orbit frame. A generally nadir-looking closed path would be considered

acceptable.

If an equilibrium condition exists for a semi-rigid body, we can extend this to a

possible way of finding an equilibrium for the tethered system.
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Objective 2: Define and/or determine the existence of an equilibrium condition

for a semi-rigid body with a continuous earth-facing component in the presence of

energy dissipation.

The next step has the most impact to the final question of tethered system utility

– finding an EC for the cluster formation. The tethered formation EC is investigated

by exploring a number of realms, including tether model, initial conditions, formation

configuration, and system attitude dynamics (aided, of course, by what is learned in

Objective 2). The entirety of developing the best system model that is in (or close

to) an equilibrium condition is shown as the yellow oval in Figure 3.1 and taken as a

whole represents Objective 3.

Objective 3: Define and/or determine the existence of an equilibrium condition

for a flexible tethered satellite system with a continuous earth-facing component.

With the system dynamics established as close to (or in) an equilibrium condi-

tion, the research then turns to applying basic control methods to the tethered system.

Whether or not the EC is found, control can still be applied, although finding the EC

obviates the minimization of the control costs.

Objective 4: Apply control schemes to the tethered system to combat pertur-

bations and maintain desired motion.

Finally, costs for the applied control methods in Objective 4 are determined and

compared to the costs of cluster formation control using thrusters only. An assessment

can then be made on the relative utility of tethers for conducting formation control

on remote sensing clusters.

Objective 5: Assess the relative utility of using tethered systems for formation

control on continuous earth-facing aperture clusters.

Note that this research is limited to the study of stationkeeping (or formation-

keeping). The relative costs/benefits of using tethers versus thrusters for deploymen-

t/retrieval of the formation is interesting and certainly very much related (hence the

duplicate flowchart in the diagram), albeit beyond the scope of this work. To put
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it bluntly, this research is less concerned with how the system arrives at a desired

reference motion than it is about the system’s ability to maintain a desired reference

motion.

3.2 Dissertation Overview

This dissertation is organized by the categories of work that are accomplished in

order to fulfill the research objectives defined above. A diagram of these incremental

research categories is shown in Figure 3.2.

Historical

Development

CH II
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CH IV
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System
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Dynamics

CH V

Apply Controls

CH VI

Assess Utility

CH VII

2 3 4
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App A App E
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Figure 3.2: Dissertation Overview

Each block represents a chapter that details the work for that particular research

area and the research objectives are identified with the appropriate chapter. Chapter

IV covers all of the rigid and semi-rigid body dynamics development and analysis, and

addresses objectives 1 and 2. Energy dissipation is found to have an adverse impact

on Likins-Pringle equilibria, and a near-“limit cycle” is found for oblate objects. This
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rigid body work builds the foundation for, and helps answer questions about, the

multi-body tethered system.

Chapter V handles all of the tethered system dynamics and the hunt for an equi-

librium condition. It is shown through exhaustive investigation that an equilibrium

condition for fixed-length tethered formations does not exist, yet a new perspective

is gained on a previously known free-flying equilibrium condition. This chapter ad-

dresses research objective 3.

Chapter VI discusses the results of applying various control schemes to the

tethered system and represents objective 4. Whether applying variable-length tethers

or adding thrusters to the system, these controls either do not maintain the tethered

system desired motion, or the control costs are high.

Chapter VII is where all the information from the previous chapters is assembled

into an argument on the utility of tethered systems for the purpose of space-based

remote sensing. The primary comparison of the control costs for a tethered system vs.

a thruster-only system show that the tethered system is simply too costly or cannot

maintain the formation for continuously earth-facing aperture clusters.

3.3 Summary

This chapter presented an overview of the research that was conducted and

the overall methodology, including a step-by-step roadmap of the sequential research

objectives. The next chapter covers the specific work accomplished in the area of rigid

and semi-rigid bodies: research objectives 1 and 2.
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IV. Rigid and Semi-Rigid Body Dynamics

Of the five steps outlined in the previous chapter, the first two deal with semi-rigid

body dynamics: effects of energy dissipation on Likins-Pringle equilibria and

finding an equilibrium condition for an earth-facing semi-rigid body. The development

and results of these analyses are presented here in this chapter.

In order to ensure high confidence in the accuracy of the results, a methodical

build-up approach is used in developing the models. First, the basic equations-of-

motion (EOM) are derived for a general axially-symmetric rigid-body model, then

gravity gradient torques are calculated for a circular orbit. The initial conditions

necessary for conical Likins-Pringle equilibria are then computed and verified with

the model. Once satisfied the rigid-body model is working properly, energy dissipa-

tion is then added in a couple of different ways. With energy dissipation successfully

included, the Likins-Pringle equilibria conditions are once again introduced and the

effects of the energy dissipation are analyzed. At each step, after the equations are

derived, modular Matlab R© code is generated to numerically and graphically demon-

strate the dynamics.

4.1 Rigid Body Development

To begin, we assume we are dealing with an axially-symmetric rigid body of

general proportions. That is, anything from a tuna can (oblate object) to a rod

(prolate object) as shown in Figure 4.1.

b3

b2

b1

b2

b1

b3

Figure 4.1: Axisymmetric Rigid Bodies of Interest
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4.1.1 Reference Frames.

The next step in deriving the equations-of-motion for the basic rigid body model

is to set up the relevant coordinate reference frames. As shown in Figure 4.2, three

frames are defined. The inertial frame, called the î-frame, is an earth-centered carte-

sian coordinate frame with axes î, ĵ, k̂. Using a point mass model for the earth, the

orbit of the rigid body is assumed, without loss of generality, to be in the inertial î-ĵ

plane. To appreciate the other two coordinate frames, the chosen attitude parame-

ters must be defined. The 3-1-3 Euler angle set is introduced with φ, θ, and ψ as the

classical Euler angles [75]. The â-frame (which is simply an intermediate frame) is

defined after the first attitude rotation from the inertial frame about the 3-axis by an

angle φ. Hence, the â1 axis becomes a sort of “line-of-nodes”. The last two rotations

about the 1 and 3 axes by angles θ and ψ (respectively) result in the third reference

frame, the body frame or b̂-frame as shown in Figures 4.1 and 4.2. The b̂3 axis is

assumed to be along the symmetry axis, with b̂1 and b̂2 in the transverse directions.
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Figure 4.2: Coordinate Reference Frames and Rotations
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The moment of inertia (MOI) matrix for the axisymmetric rigid body is defined

as:

b̂I⊕b =




A 0 0

0 A 0

0 0 C


 (4.1)

where A and C are the transverse and axial moments of inertia, respectively. The

nomenclature on I means: the moment of inertia of the rigid body (b), about the

center of mass (⊕), expressed in the b̂ frame. Since the MOI is assumed to always be

about the center of mass, and the discussion (for now) will be limited to a single rigid

body, the ⊕ and b notation will be dropped.

To determine the transformations between different reference frames, it is helpful

to recall the elementary rotation matrices, Ri. These matrices are the direction cosine

matrices of a rotation about the first, second, or third axis by an arbitrary angle αi:

R1(α1) =




1 0 0

0 cos(α1) sin(α1)

0 − sin(α1) cos(α1)


 (4.2)

R2(α2) =




cos(α2) 0 − sin(α2)

0 1 0

sin(α2) 0 cos(α2)


 (4.3)

R3(α3) =




cos(α3) sin(α3) 0

− sin(α3) cos(α3) 0

0 0 1


 (4.4)

Therefore, the complete rotation matrix, Cbi, from the î-frame to the b̂-frame

(shown in Figure 4.2) is given by:
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Cbi = R3(ψ)R1(θ)R3(φ) (4.5)

such that 



b̂1

b̂2

b̂3





= Cbi





î

ĵ

k̂





(4.6)

Cbi =




cos ψ cos φ− cos θ sin ψ sin φ cos ψ sin φ + cos θ sin ψ cos φ sin ψ sin θ

− sin ψ cos φ− cos θ cos ψ sin φ − sin ψ sin φ + cos θ cos ψ cos φ cos ψ sin θ

sin θ sin φ − sin θ cos φ cos θ




(4.7)

Likewise, to convert from the b̂-frame to the î-frame:





î

ĵ

k̂





= C ib





b̂1

b̂2

b̂3





= R3(−φ)R1(−θ)R3(−ψ)





b̂1

b̂2

b̂3





(4.8)

where

Cib =




cos ψ cos φ− cos θ sin ψ sin φ − sin ψ cos φ− cos θ cos ψ sin φ sin ψ sin θ

cos ψ sin φ + cos θ sin ψ cos φ − sin ψ sin φ + cos θ cos ψ cos φ − cos ψ sin θ

sin θ sin ψ sin θ cos ψ cos θ




(4.9)

The rotation from the b̂-frame to the â-frame is given by the rotation matrix

Cab and





â1

â2

â3





= Cab





b̂1

b̂2

b̂3





= R1(−θ)R3(−ψ)





b̂1

b̂2

b̂3





(4.10)
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where

Cab =




cos ψ − sin ψ 0

cos θ sin ψ cos θ cos ψ − sin θ

sin θ sin ψ sin θ cos ψ cos θ


 (4.11)

4.1.2 Euler’s Equations-of-Motion.

With the reference frames defined, the equations-of-motion can now be derived

from the fact that the applied external torque ( ~M) is equal to the time rate of change

of the angular momentum ( ~̇H)

~M = ~̇H (4.12)

The right side of Equation 4.12 is the inertial frame time derivative of

~H = b̂I b̂~ωbi (4.13)

where b̂I is from Equation 4.1 and b̂~ωbi is the angular velocity of the rigid body

with respect to the inertial frame expressed in the body frame. For simplicity, the b̂

superscripts will be dropped from here on out (unless needed due to different frames

being used). As Likins [29] demonstrates, the vector derivatives of an arbitrary vector

~Z in any two reference frames is related by :

î d

dt
~Z = b̂ d

dt
~Z + ~ωbi × ~Z (4.14)

Applying Equation 4.14 to the angular momentum ( ~H), 4.12 becomes:

~M = î d

dt
(I~ωbi) = b̂ d

dt
(I~ωbi) + ~ωbi × (I~ωbi) (4.15)

Since I is defined in terms of the body frame, it is constant. Thus [75],
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~M = I~̇ωbi + ~ωbi × I~ωbi (4.16)

where ~̇ωbi is the body frame time derivative of ~ωbi. By letting ~ωbi have the body

frame components ω1, ω2, ω3, then Equation 4.16 can be re-written as three Euler’s

Equations [19]:

M1 = Aω̇1 + (C − A)ω2ω3 (4.17)

M2 = Aω̇2 + (A− C)ω1ω3 (4.18)

M3 = Cω̇3 (4.19)

Solving these equations for the ω̇i, we get “three coupled, nonlinear, first-order

differential equations (that) constitute one-half of the rotational equations-of-motion

for a rigid body” [75]. These are our Euler’s Equations-of-Motion:

ω̇1 =
M1

A
+

(A− C)

A
ω2ω3 (4.20)

ω̇2 =
M2

A
+

(C − A)

A
ω1ω3 (4.21)

ω̇3 =
M3

C
(4.22)

or in matrix notation

~̇ω = I−1 ~M − I−1~ωxI~ω (4.23)

with

~ωx =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



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In order for these equations-of-motion to be useful, we need to find ~ωbi (or ~ω)

and ~M . ~ωbi is the inertial angular velocity and can be expressed in multiple reference

frames as

∗̂~ωbi = ψ̇b̂3 + φ̇â3 + θ̇â1 (4.24)

However, from 4.11 we get

â3 = sin ψ sin θb̂1 + cos ψ sin θb̂2 + cos θb̂3 (4.25)

â1 = cos ψb̂1 − sin ψb̂2 (4.26)

therefore, substituting Equations 4.25 and 4.26 into Equation 4.24 we get

b̂~ωbi = ω1b̂1 + ω2b̂2 + ω3b̂3 (4.27)

where

ω1 = φ̇ sin ψ sin θ + θ̇ cos ψ

ω2 = φ̇ cos ψ sin θ − θ̇ sin ψ

ω3 = φ̇ cos θ + ψ̇

(4.28)

The external torques ( ~M) must also be defined. For this problem, it is assumed

that the earth’s gravity is the only external force acting on the rigid body, so the

only torques that will be applied will be due to gravity gradient. This is a reasonable

assumption since third body influences are much lower order perturbations than the

basic dynamics being analyzed here.

To compute the gravity gradient torques, a fourth reference frame will be useful.

The ê-frame is an earth-centered, orbit fixed frame. This frame rotates in the orbit

plane such that the êr axis (actually, the only axis of interest) is always pointed at

the orbiting rigid body (see Figure 4.3). The angle ν measures the difference between

the ĵ axis and the êr axis.
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Figure 4.3: êr axis relative to î and â frames

We can now define a vector ~R from the origin of the inertial frame to the rigid

body as e ~R = Rêr, where êr = (− sin ν) î + (cos ν) ĵ and R is the scalar distance from

the center of the earth to the rigid body. Furthermore, R is assumed to be constant

as we are only considering a circular orbit. In the î-frame, ~R is rewritten as:

î ~R = (−R sin ν) î + (R cos ν) ĵ (4.29)

which is converted to b̂-frame coordinates (X, Y , Z) as

b̂ ~R = Cbi i ~R = Xb̂1 + Y b̂2 + Zb̂3 (4.30)

where

X = −R(sin ν cos ψ cos φ− sin ν cos θ sin ψ sin φ− cos ν cos ψ sin φ− cos ν cos θ sin ψ cos φ)

Y = R(sin ν sin ψ cos φ + sin ν cos θ cos ψ sin φ− cos ν sin ψ sin φ + cos ν cos θ cos ψ cos φ)

Z = −R(sin ν sin θ sin φ + cos ν sin θ cos φ)

Following the development in Wiesel [75], if we assume the rigid body is small

compared to the earth and note that our body frame is aligned with the principle axes

and has its origin at the center of mass, then the gravity gradient torque components

expressed in the body frame are:
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M1 = 3µ⊕R−5Y Z(C − A)

M2 = 3µ⊕R−5XZ(A− C)

M3 = 3µ⊕R−5XY (A− A) = 0

(4.31)

where µ⊕= GM⊕ is the gravitational constant for the Earth, G is the universal grav-

itational constant, M⊕ is the mass of the Earth, and X, Y , Z are the body frame

components of the orbit position vector as shown above in 4.30. By going back to

Equation 4.23 and inserting the results for ~ω (Equation 4.28) and ~M (Equation 4.31),

we get the complete set of Euler’s Equations-of-Motion:





ω̇1

ω̇2

ω̇3





=




1
A

0 0

0 1
A

0

0 0 1
C







M1

M2

M3


−




1
A

0 0

0 1
A

0

0 0 1
C







0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0







A 0 0

0 A 0

0 0 C







ω1

ω2

ω3




(4.32)

where

M1 = 3µ⊕R−5Y Z(C − A)

M2 = 3µ⊕R−5XZ(A− C)

M3 = 0

ω1 = φ̇ sin ψ sin θ + θ̇ cos ψ

ω2 = φ̇ cos ψ sin θ − θ̇ sin ψ

ω3 = φ̇ cos θ + ψ̇

These equations make up only the first half of our total rotational equations-of-

motion.

4.1.3 Orientation Equations-of-Motion.

The other half of the equations-of-motion come from the orientation angles and

are derived from Equation 4.28, which can be re-written as:
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~ωbi =




φ̇ sin ψ sin θ + θ̇ cos ψ

φ̇ cos ψ sin θ − θ̇ sin ψ

φ̇ cos θ + ψ̇


 =




sin ψ sin θ cos ψ 0

cos ψ sin θ − sin ψ 0

cos θ 0 1








φ̇

θ̇

ψ̇





(4.33)

If we let

K =




sin ψ sin θ cos ψ 0

cos ψ sin θ − sin ψ 0

cos θ 0 1




and define ~ε= [φ θ ψ]T as the vector of Euler angles, then

~ωbi = K~̇ε (4.34)

or

~̇ε = K−1 ~ωbi (4.35)

Therefore, the Orientation Equations-of-Motion are:

~̇ε =





φ̇

θ̇

ψ̇





=
1

sin θ




sin ψ cos ψ 0

cos ψ sin θ − sin ψ sin θ 0

− sin ψ cos θ − cos ψ cos θ sin θ








ω1

ω2

ω3





(4.36)

These three equations, along with the three equations from 4.32 constitute the

six rotational equations-of-motion for the axisymmetric rigid body in a circular orbit.

The state vector, X, for these equations-of-motion are the three Euler angles and the

three components of the angular velocity vector.

~X =
{

φ θ ψ ω1 ω2 ω3

}T

(4.37)
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4.1.4 Likins-Pringle Equilibria.

As mentioned in Chapter II, Hughes [20] has described the relative equilibria of

a spinning axisymmetric satellite in circular orbit such that its spin axis remains fixed

with respect to an orbiting frame. As with Tragesser [66], we are primarily interested

in the conical equilibria, so called for the shape the spin axis sweeps through as it

precesses around the earth. The idea is to balance the free precession (caused by ~H

and ~ω not being aligned), the forced precession (caused by gravitational torques), and

the orbit rate such that the rigid body precesses at the same rate as the orbit, thus

ensuring the body keeps the same ‘face’ towards the earth at all times.

The general development for the Likins-Pringle equilibria can be found in Likins

[30], Hughes [20], or Tuncay [69], and the detailed development for our particular

dynamic model is shown in Appendix A, but the key relationship is shown below

in Equation 4.40. As is shown in the next two sections, these relative equilibria are

achieved simply by finding the correct initial conditions for the three Euler angles (φ,

θ, and ψ) and the angular velocity (~ωbi).

4.1.5 Euler Angle Initial Conditions.

The Euler angles are somewhat arbitrary. As the “spin angle”, ψ, is going to

grow large over time, so its starting point is not crucial. θ, which is the angle of

the spin axis from the orbit normal, can be almost any angle except multiples of π/2

where the ‘cone’ would get squashed into a plate or extended into a cylinder. In

addition, θ = 0 is also a singularity in the equations-of-motion (see Equation 4.36)

and should be avoided (note that this condition also corresponds to the Thomson

equilibrium). The initial value of φ, the rotation angle between the inertial frame and

the orbit frame, is also arbitrary, but it will drive the value of ν as depicted in Figure

4.3.
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4.1.6 Angular Velocity Initial Conditions for Likins-Pringle.

Recall from Equation 4.33 that ~ωbi is a function of the Euler angles and their ve-

locities. With the Euler angles already determined above, the last step to establishing

the relative equilibrium condition would be to find their velocities.

To get a constant cone angle sweep by the spin axis, θ should remain unchanged,

hence

θ̇ = 0 (4.38)

Since the goal is to have the orbit frame rotate at the same rate as the orbit

itself,

φ̇ = ν̇ (4.39)

Finally, and most importantly, the spin rate is calculated as a function of orbit

rate (ν̇), cone angle (θ), and the moments of inertia of the axisymmetric orbiting body

(A, C):

ψ̇ = ν̇ cos θ (4 (A− C))/C (4.40)

The development of this equation is shown in Appendix A. Equation 4.40

represents all of the conical Likins-Pringle equilibria as shown in Figure 4.4. Note that

this plot is similar in nature to Tragesser’s “equilibrium angles” plot [67], although he

uses his own non-dimensional variables. Here we use a re-arrangement of Equation

4.40

ψ̇

ν̇
= 4 cos θ

(
1

C/A
− 1

)
(4.41)

and the moments-of-inertia to construct the plot of equilibrium conditions.
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Figure 4.4: Conical Equilibrium Conditions: Spin-to-Orbit Rate Ratio vs Cone
Angle

4.2 Rigid Body Simulations

With the equations-of-motion established and initial conditions for the relative

equilibria identified, the next step is to define the various constants and run numerical

simulations to verify the model. Note that the initial Euler angles are arbitrarily

chosen to be φ0 = 0, θ0 = π/4, ψ0 = 0. The values chosen for the various constants

are shown in Table 4.1.
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Table 4.1: Rigid Body Constant Values.

Constant Value Based On

~R 9378145 m 3000 km circular orbit altitude
ν0 0 φ0 = 0
ν̇ 0.0006952 rad/sec orbit altitude
µ⊕ 3.986004415 x 108 m3/sec2 Vallado [71]

A, C 10, 50 oblate body
A, C 50, 10 prolate body

A Matlab R© simulation was created that uses the ODE45 integrator to propa-

gate the equations-of-motion from the previous sections. The specific code is shown

in Appendix F. The key results of these simulations take the form of several kinds of

plots:

• ~H and ~ω in the body frame.

• ~H, ~ω, and the b̂3-axis in the inertial frame

• b̂3-axis in the rotating orbit frame

• Angles-over-time between ~H, ~ω, and the b̂3-axis (constant for a rigid body)

• The six states of the rigid body over time

• 3-D movie of rigid body orientation in inertial space (not shown here)

Note: the spatial figures described above are solely used to provide a visualization of

the relative behavior of the b̂3-axis, the angular velocity vector and angular momentum

vector. To provide the best visualization, each vector is normalized from its individual

physical units to unity. Furthermore, ~H and ~ω magnitudes are set to one-half unity

in order to more easily distinguish the different vectors on the plots. In addition,

diamonds are added to the first 10 time steps of each spatial plot to denote the

starting location of each vector.
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4.2.1 Results for the Torque-Free Rigid Body.

To ensure the model is accurate, both prolate and oblate objects are first tested

with the gravity gradient torques turned off. Figures 4.5-4.6 show typical results for a

rigid body in a torque-free environment with initial φ̇ = 0.2 and initial ψ̇ = 0.5. The

response is very much as expected.

In this torque-free situation, the angular momentum ( ~H) remains fixed for all

time as it should, but the object still precesses (see Figure 4.5). This is the “free”

precession. These results are what was expected for a prolate object. Similarly

expected results were found for oblate objects as well, but are not shown here for

brevity’s sake.
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Figure 4.5: ~H, ~ω, and the b̂3-axis in the inertial frame (Prolate Rigid Body, Gravity
Off)
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The cone angles of Figure 4.6 rightfully do not change over time. This is true in

both the prolate and oblate cases (prolate shown). This can best be visualized by the

rolling of a body fixed cone over a space cone as depicted by Hand and Finch [19]. As

shown in Figure 4.7, the rolling of the body cone about the space cone will result in

free precession of the b̂3-axis, but there is no cause for the cones themselves to change

shape, thus the angles remain fixed.
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Figure 4.7: Dynamic Cones of Torque-Free Rigid Bodies
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4.2.2 Results for the Likins-Pringle Rigid Body.

Satisfied that the model is working properly based on the torque-free results,

the next step is to turn the gravity on and set the initial conditions such that the

rigid body is in a stable Likins-Pringle conical equilibrium. These Likins-Pringle or

“L-P” results are shown in Figures 4.8-4.14. The plots show the motion of the rigid

body over 10 orbits and confirm that the spin axis does in fact rotate to keep ‘facing’

the earth.

In the body frame, we see steady rotation of the ~H and ~ω vectors (Figure 4.8)

and that they maintain constant angles with respect to the b̂3-axis (Figure 4.9). This

is seen in both the oblate and prolate cases (prolate shown here), and as before, it is

best explained as the free precession.
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Figure 4.8: ~H and ~ω in the body frame (Prolate Rigid Body, L-P)

With the addition of gravity gradient torques, however, we now have some forced

precession. Hence in Figure 4.10 we see that ~H oscillates inertially rather than staying

fixed. This is the expected result and was seen for both the oblate and prolate cases.
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Figure 4.10: ~H, ~ω, and the b̂3-axis in the inertial frame (Prolate Rigid Body, L-P)

The real question however is: Does the symmetry axis (b̂3-axis) remain fixed

with respect to the rotating orbit reference frame? The answer is yes! Figures 4.10

and 4.11 show the b̂3-axis (green) in a stable periodic oscillation about the inertial
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k̂ axis for both prolate and oblate objects after 10 orbits. The code also produces a

graphical animation in inertial space to give the viewer a better understanding of the

dynamics. Unfortunately, this cannot be shown here. What can be shown however, is

the motion of the b̂3-axis with respect to the orbit frame (Figure 4.12). Clearly, this

axis is not moving with respect to the orbit frame and therefore presents the desired

constant ‘face’ in the nadir direction.
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Figure 4.11: ~H, ~ω, and the b̂3-axis in the inertial frame (Oblate Rigid Body, L-P)

Further evidence of the desired equilibria is seen in the state plots. As can be

seen in Figures 4.13 and 4.14, θ doesn’t deviate over ten orbits.
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Figure 4.14: States (Oblate Rigid Body, L-P)
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Thus far we have demonstrated a working model of an axisymmetric rigid body

and have been able to create the conditions for Likins-Pringle conical equilibria for

both oblate and prolate objects. The next step is to add energy dissipation to analyze

the effects on these L-P equilibria.

4.3 Semi-Rigid Body Development

For the purposes of this work, a “semi-rigid body” is defined as a rigid body with

energy dissipation added. In order to introduce energy dissipation into the model,

three identical rotor disks are added to the system – one for each principle axis of

the main body. Each rotor has its symmetry axis co-aligned with one of the main

body axes and is free to spin, with damping, around that axis only (see Figure 4.15).

The reader must suspend disbelief for this theoretical set of rotors as all three have

their center of mass co-located with the main body’s center of mass. In addition, it

is assumed that the main body and all three rotors have uniform mass distributions.

We have now graduated from a rigid body to a semi-rigid body given the movement

of the rotors relative to the main body. While there are a number of ways one could

add energy dissipation to create a semi-rigid body, this method was chosen since it is

conceptually easy to visualize.

b3
b2

b1

b1

b2
b3

Figure 4.15: 3-Rotor Set Added to the System
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4.3.1 Total System Angular Momentum.

We have from Equation 4.13 that the angular momentum for the body alone is:

~Hb = b̂Ib
b̂~ωbi =




A 0 0

0 A 0

0 0 C







ω1

ω2

ω3


 (4.42)

We define the angular momenta of the three individual rotors as

~Hr1 = Cbr1 r̂1Ir1 Cr1b b̂~ωr1i = Cbr1




D1 0 0

0 E1 0

0 0 F1


 Cr1b




ω1 + σ1

ω2

ω3


 (4.43)

~Hr2 = Cbr2 r̂2Ir2 Cr2b b̂~ωr2i = Cbr2




D2 0 0

0 E2 0

0 0 F2


 Cr2b




ω1

ω2 + σ2

ω3


 (4.44)

~Hr3 = Cbr3 r̂3Ir3 Cr3b b̂~ωr3i = Cbr3




D3 0 0

0 E3 0

0 0 F3


 Cr3b




ω1

ω2

ω3 + σ3


 (4.45)

where Di, Ei, and Fi are the moments of inertia for the ith rotor and σi is the

relative spin velocity of the ith rotor compared to the main body. Since the rotors are

axisymmetric, we can say that E1 = F1, D2 = F2, and D3 = E3, hence Cbri and Crib

are identity matrices and

r̂1Ir1 = b̂Ir1 =




D1 0 0

0 E1 0

0 0 E1



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r̂2Ir2 = b̂Ir2 =




D2 0 0

0 E2 0

0 0 D2




r̂3Ir3 = b̂Ir3 =




D3 0 0

0 D3 0

0 0 F3




for all time. Furthermore, since the rotors are identical the their major and minor

moments of inertia will also match. Therefore, we define two new terms for these

inertias: J= E1 = D2 = D3 (minor moment); and D= D1 = E2 = F3 (major

moment). All of this reduces Equations 4.43-4.45 to

~Hr1 =




D 0 0

0 J 0

0 0 J







ω1 + σ1

ω2

ω3


 (4.46)

~Hr2 =




J 0 0

0 D 0

0 0 J







ω1

ω2 + σ2

ω3


 (4.47)

~Hr3 =




J 0 0

0 J 0

0 0 D







ω1

ω2

ω3 + σ3


 (4.48)

The sum of the three equations above, along with Equation 4.42, become the

total system angular momentum, ~Hsys:

~Hsys = ~Hb + ~Hr1 + ~Hr2 + ~Hr3 (4.49)
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or

~Hsys =




A 0 0

0 A 0

0 0 C







ω1

ω2

ω3


 + 2J




ω1

ω2

ω3


 + D




ω1 + σ1

ω2 + σ2

ω3 + σ3


 (4.50)

which reduces to

~Hsys =




(A + D + 2J)ω1 + Dσ1

(A + D + 2J)ω2 + Dσ2

(C + D + 2J)ω3 + Dσ3


 (4.51)

4.3.2 3-Rotor Equations-of-Motion.

The equations-of-motion for the new system can now be developed. Clearly, the

Orientation Equations-of-Motion (Equation 4.36) are identical to those developed

before the rotors were added, therefore only the Euler’s Equations-of-Motion need

to be derived. Recalling Equation 4.14 from the earlier section, we take the inertial

derivative of ~Hsys,

i d

dt
~Hsys = b d

dt
( ~Hsys) + ~ωbi × ( ~Hsys) (4.52)

which yields

~̇Hsys =




(A + D + 2J)ω̇1 + Dσ̇1

(A + D + 2J)ω̇2 + Dσ̇2

(C + D + 2J)ω̇3 + Dσ̇3


+




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0







(A + D + 2J)ω1 + Dσ1

(A + D + 2J)ω2 + Dσ2

(C + D + 2J)ω3 + Dσ3




After the multiplying everything and canceling terms, we are left with the kernel

of our Equations-of-Motion:

~̇Hsys = M̄ =




(A + D + 2J)ω̇1 + Dσ̇1

(A + D + 2J)ω̇2 + Dσ̇2

(C + D + 2J)ω̇3 + Dσ̇3


 +




(C − A)ω2ω3 −Dω3σ2 + Dω2σ3

(A− C)ω1ω3 + Dω3σ1 −Dω1σ3

−Dω2σ1 + Dω1σ2




(4.53)
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Of course, with the addition of the three rotors we have introduced three new

states, namely their relative spin rates, σi. Subsequently, we need the following three

additional governing equations for the rotors:

D(σ̇1 + ω̇1) = µdσ1 (4.54)

D(σ̇2 + ω̇2) = µdσ2 (4.55)

D(σ̇3 + ω̇3) = µdσ3 (4.56)

These can be rewritten in terms of the σ̇i and become three of our new equations-

of-motion:

σ̇1 = −ω̇1 − µd

D
σ1 (4.57)

σ̇2 = −ω̇2 − µd

D
σ2 (4.58)

σ̇3 = −ω̇3 − µd

D
σ3 (4.59)

where µd is the viscous damping coefficient. Inserting Equations 4.57-4.59 into Equa-

tion 4.53 and solving for the ωi, we get the last of our 3-Rotor Equations-of-Motion.

The complete set of nine equations-of-motion now are:

ω̇1 =
M1

A + 2J
+

(A− C)ω2ω3 + Dω3σ2 −Dω2σ3 + µdσ1

A + 2J
(4.60)

ω̇2 =
M2

A + 2J
+

(C − A)ω1ω3 −Dω3σ1 + Dω1σ3 + µdσ2

A + 2J
(4.61)

ω̇3 =
M3

C + 2J
+

Dω2σ1 −Dω1σ2 + µdσ3

C + 2J
(4.62)

σ̇1 = −
(

M1

A + 2J
+

(A− C)ω2ω3 + Dω3σ2 −Dω2σ3 + µdσ1

A + 2J

)
− µd

D
σ1 (4.63)

σ̇2 = −
(

M2

A + 2J
+

(C − A)ω1ω3 −Dω3σ1 + Dω1σ3 + µdσ2

A + 2J

)
− µd

D
σ2 (4.64)

σ̇3 = −
(

M3

C + 2J
+

Dω2σ1 −Dω1σ2 + µdσ3

C + 2J

)
− µd

D
σ3 (4.65)
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



φ̇

θ̇

ψ̇





=
1

sin θ




sin ψ cos ψ 0

cos ψ sin θ − sin ψ sin θ 0

− sin ψ cos θ − cos ψ cos θ sin θ








ω1

ω2

ω3





(4.66)

The state vector for these equations-of-motion are the three components of the

bodies angular velocity vector, the relative spin velocities of the three rotors, and the

three Euler angles.

~X =
{

φ θ ψ σ1 σ2 σ3 ω1 ω2 ω3

}T

(4.67)

4.3.3 Kinetic Energy.

One of the evaluation parameters to look at during energy dissipation analysis

is obviously the energy itself to ensure it is in fact decreasing. The total kinetic energy

(KE) of the system is the sum of the body’s KE and the KE of the three individual

rotors. As stated previously, the relation for finding rotational kinetic energy is [75]

KE =
1

2
~ω · I~ω (4.68)

After a little bit of math from Equations 4.43-4.45 and 4.42, the final equation for

total system kinetic energy is

KE =
1

2

[
Aω2

1 + Aω2
2 + Cω2

3

]
+

[
Jω2

1 + Jω2
2 + Jω2

3

]

+
1

2
D

[
(ω1 + σ1)

2 + (ω2 + σ2)
2 + (ω3 + σ3)

2] (4.69)

4.4 Semi-Rigid Body Simulations

The original Matlab R© code used for the rigid body earlier in this chapter is

modified to include the new equations-of-motion with the rotors added. The same

Euler angle initial conditions are used as before (φ0 = 0, θ0 = π/4, ψ0 = 0) and
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the rotors’ initial relative velocities are all set to zero. Using the fuel slug example

from Wie [74] as a guideline, the damping coefficient (µd) is set to 0.5 – roughly two

orders of magnitude less that the main rotor’s transverse MOI. The axial MOI for

each rotor is set to 1 (arbitrarily chosen, but D << A or C), while the transverse

MOI is set to 0.0001 (also arbitrary, but J << A, C or D). The same kinds of plots

used to evaluate the rigid body dynamics are again used to examine the semi-rigid

body response. As before, the specific code is shown in Appendix F.

4.4.1 Torque-Free Energy Dissipation Effects.

As before, to ensure the new energy dissipative model is accurate, both prolate

and oblate objects are first tested with the gravity gradient torques turned off. Once

again, the initial Euler angle velocities for the torque-free condition are set to φ̇ = 0.2,

θ̇ = 0, and ψ̇ = 0.5.

Figures 4.16-4.21 show the results of energy dissipation on the prolate body.

As would be expected for a torque-free condition, the angular momentum vector ( ~H)

stays fixed in inertial space (as denoted by a red ‘+’ in the center of Figure 4.17)

but walks around in the body frame until a minimum energy state is reached (Figure

4.16).

Once the minimum energy state is reached, ~H then becomes fixed at an arbitrary

location in the b̂1−b̂2 plane (shown as a magenta diamond in Fig. 4.16). This behavior

corresponds perfectly to the discussion Wiesel [75] gives of polhodes that are modified

by energy dissipation. In his book, Wiesel describes polhodes as a family of curves

traced out by ~ω that is created by the intersection of the kinetic-energy and angular-

momentum ellipsoids (Fig. 4.18). For an axisymmetric body in a constant energy

state, the polhode (shaped much like a football) would roll on the invariable plane

along one of the polhode paths. If the same body were to lose energy, the ~ω vector

would trace out a spiraling path that cuts through the constant energy polhode curves

until finally converging on a state of pure spin about the major inertia axis as shown

in Figure 4.19.
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Figure 4.16: ~H in the body frame (Prolate Semi-Rigid Body, Gravity Off)
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Figure 4.17: ~H, ~ω, and the b̂3-axis in the inertial frame (Prolate Semi-Rigid Body,
Gravity Off)
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Figure 4.18: Polhodes of Different Constant Energy Levels [75]

Figure 4.19: Polhodes with Energy Dissipation [75]
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This is exactly what we see happening with our model. Figure 4.17 shows ~ω

spiraling down to a state of pure spin (with ~ω and ~H aligned about the major axis as

the b̂3 axis settles into a pure sweep about the ~ω, ~H vectors, which are now fixed in

an arbitrary direction in the b̂1 − b̂2 plane).

Unlike the rigid body, the angles plotted in Figure 4.20 show that they do not

remain constant in the presence of energy dissipation. It can be shown that these cone

angles are in fact changing in a manner that is expected in the presence of energy

dissipation, but this will not be detailed here.
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Figure 4.20: Angles-over-time (Prolate Semi-Rigid Body, Gravity Off)

The plots of the states and kinetic energy also support that the model works

according to theory. As seen in Figure 4.21, the states settle into pure spin about

transverse axis. Although off the chart, ψ rolls off to a constant value while θ is shown

to oscillate about a flat spin plane (approximately 90 degrees). Also, ~ω stabilizes in

the b̂1− b̂2 body plane as the σi’s drop to zero (that is, as the rotors ‘catch up’ to the

body, the relative velocities go away). Finally, the kinetic energy is shown to drop off

until it approaches some minimum value.
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Figure 4.21: States and Kinetic Energy (Prolate Semi-Rigid Body, Gravity Off)
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Figures 4.22-4.25 show the results of energy dissipation on the oblate body. As

with the prolate case, the oblate results proves equally reasonable. In Figure 4.22, ~H

and ~ω both spiral down together to a state of pure spin about the b̂3 axis.
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Figure 4.22: ~H and ~ω in the body frame (Oblate Semi-Rigid Body, Gravity Off)

In the inertial frame, angular momentum stays fixed again as ~ω and b̂3 spiral

in towards ~H (see Figure 4.23). The angles in Figure 4.24 show this happening from

another perspective. As can be seen, the cone angles rapidly collapse to zero since a

spinning oblate object is already near it’s major axis (i.e. minimum energy state).
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Figure 4.23: ~ω and the b̂3-axis in the inertial frame (Oblate Semi-Rigid Body,
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In Figure 4.25, the states and kinetic energy quickly settle down into pure spin

about major (symmetry) axis. ω1, ω2 and all σi’s drop to zero as ω3 picks up all of

their magnitude and stabilizes at a constant value itself.
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Figure 4.25: States and Kinetic Energy (Oblate Semi-Rigid Body, Gravity Off)

All of these results indicate that the semi-rigid body model realistically simulates

the effects of energy dissipation on the attitude dynamics of the main body.

4.4.2 Energy Dissipation Effects on Likins-Pringle.

Confident that the semi-rigid body model works properly for the general torque-

free case, the initial conditions for a Likins-Pringle conical equilibria are used and

gravity torques are turned on. The results of these simulations are shown here and

answer the first question of this research: What effect does energy dissipation have on

the Likins-Pringle equilibria?
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The effect is best shown by looking at the behavior of the b̂3 axis in the inertial

frame and the orbit frame. Recall that for Likins-Pringle, we expect the b̂3 axis to be

in a stable periodic oscillation about the k̂ axis of the inertial frame and fixed in the

orbit frame (refer back to Figures 4.10, 4.11, and 4.12).

We first look at the case of the prolate object. Figure 4.26 shows the prolate

object with energy dissipation after only one orbit. Clearly the b̂3 axis is not in

a stable oscillation as it fails to return to its original position after one revolution.

Indeed, as the simulation is run out to ten orbits (Figure 4.27), the departure is even

greater.
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Figure 4.26: ~H, ~ω, and the b̂3-axis in the inertial frame (Prolate Semi-Rigid Body,
L-P, 1-Orbit)

The most telling sign that energy dissipation adversely effects the equilibria is

the position of the b̂3 axis in the orbit frame (Figure 4.28). Rather than staying

in a fixed position in this rotating frame (which would be required for a perfect

equilibrium), the b̂3 axis sweeps through a dramatic pattern that is approximately 12

degrees high and 9 degrees across. Obviously this would be an undesirable behavior
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Figure 4.27: ~H, ~ω, and the b̂3-axis in the inertial frame (Prolate Semi-Rigid Body,
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for the remote sensing mission.

The oblate L-P case, by comparison, is much better albeit still adversely affected

by the energy dissipation. After one orbit, the desired motion seems to be achieved,

as shown in Figure 4.29. The b̂3 axis appears to return to its original position after

one revolution, but it turns out to only delay the inevitable. Figure 4.30 shows that

eventually, the b̂3 axis departs the nominal oscillation.
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Figure 4.29: ~H, ~ω, and the b̂3-axis in the inertial frame (Oblate Semi-Rigid Body,
L-P, 1-Orbit)

Looking at the orbit frame behavior, the oblate case deviation is more suppressed

but the b̂3 axis still cannot hold a fixed position in the rotating reference frame (Figure

4.31). The up and down nodding is limited to about 4 degrees and the side to side

motion is less than 3 degrees – far less than the prolate case, but still undesirable

when the goal is to remain fixed.
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Figure 4.30: ~H, ~ω, and the b̂3-axis in the inertial frame (Oblate Semi-Rigid Body,
L-P, 10-Orbits)
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Figure 4.31: b̂3-axis in the Rotating Orbit Frame (Oblate Semi-Rigid Body, L-P,
10-Orbit)
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Clearly, energy dissipation has a de-stabilizing effect on the conical L-P equilib-

ria regardless of the shape of the object. That is, in the presence of energy dissipation,

the b̂3 axis of a semi-rigid body in a L-P equilibrium does not remain fixed in the orbit

frame (although it is worth noting that the behavior is still generally earth-facing).

This result could likely explain some of the instabilities that Tragesser [67] encoun-

tered, particularly with his prolate tethered formations. The energy dissipation effect

may be a major reason his configurations eventually diverged from the nominal mo-

tion.

The de-stabilization is much more pronounced in the prolate case (Figures 4.27

and 4.28) due to the impact of the Major Axis Rule which causes a prolate object to

drift towards a flat spin about an arbitrary transverse moment of inertia. Looking

forward to the case of a prolate tethered system, a flat spin of this kind would mean

essentially no spin rate for the ring satellites, hence no tether tension in the ring

tethers. On the other hand, the oblate case has a much less erratic, although still

de-stabilizing, response to energy dissipation. Armed with that knowledge, we put

aside the prolate tethered formation concepts and focus the remainder of this research

on oblate configurations only.

Overall, the effect of energy dissipation on the conical L-P equilibria is unsuit-

able for the mission if not compensated for.

4.4.3 Equilibrium Condition for Semi-Rigid Bodies.

With the first objective complete, the next question to answer is: Can we find

an equilibrium condition for an earth facing semi-rigid body? Surprisingly, an answer

to this for the oblate case is much closer than we think.

While the effects of energy dissipation on L-P are initially (1 to 10 orbits) de-

stabilizing to the fixed equilibrium condition, we find that over a long period of time

(150 orbits), the higher order oscillations caused by energy dissipation have settled out

and we are left with a near-“limit cycle”: simple circularized behavior that remains

earth-facing, and nearly repeats itself in the orbit frame. The average cone angle
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grows very slowly once this near limit cycle is reached. An example of this is shown

in Figure 4.32, which is the same semi-rigid body scenario shown in Figure 4.31,

but after many more orbits. Notice the higher frequency behavior vanishes leaving a

simple, near-periodic motion in the orbit frame. This “calming” effect is only observed

in the oblate case.
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Figure 4.32: b̂3-axis in the Rotating Orbit Frame (Oblate Semi-Rigid Body, L-P,
Orbits 140-150)

To visualize why this would happen only for the oblate case, the following

concept is offered: imagine a polhode on an invariable plane, except now we have an

“invariable” plane that is varying (in a periodic fashion) due to the gravity torques.

The oblate object’s polhode rolls around on the “variable” plane in the vicinity of its

major inertia axis and despite being constantly nudged by the continual motion of

our varying plane, it still wants to stay in the vicinity of the major axis. Conversely,

the prolate object’s polhode starts rolling near its minor inertia axis initially, but

naturally wants to gravitate toward its major axis.
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A cursory review of a limited number of scenario’s shows that this long-term

slow cone angle growth (on the order of thousandths of degrees per orbit) is insensitive

to reasonable changes in damping parameters, initial cone angle, and orbit altitude.

One of the more obvious reasons for desiring the oblate body’s long-term, simple,

circular response over the prolate body’s complex, unbounded, motion is the mission

engineer’s eventual need to manage sensor gimbals to counter the effects of the non-

nadir pointing. The more erratic the motion, the higher the cost to maintain pointing.

If we relax our constraint about a perfect equilibrium and accept (as an equilibrium

condition) behavior that is somewhat fixed in the orbit frame with oscillations that

are small, periodic, and simple (i.e. without the higher order patterns), then we can

consider the long term oblate L-P response as shown in Figure 4.32 to be an acceptable

near-equilibrium condition for an oblate semi-rigid body.

Since a near-equilibrium condition is found for the semi-rigid oblate case, no

other analytic approaches are investigated to find a perfect equilibrium. The oblate

L-P equilibria are used in the next step to base initial conditions for the multiple

body system.

4.5 Summary

This chapter detailed the work that was accomplished in the area of rigid (no

energy dissipation) and semi-rigid (with energy dissipation) body dynamics. Specif-

ically, it discussed the development and numerical simulation of rigid and semi-rigid

body models to determine the effects of energy dissipation on Likins-Pringle equilibria

and to find an equilibrium condition for an earth-facing semi-rigid body.

Energy dissipation was found to have an adverse, de-stabilizing effect on Likins-

Pringle equilibria in general. However, over the long term, an oblate semi-rigid body

that starts in a Likins-Pringle equilibria settles into a simple, near-periodic motion

that is acceptable to use as a basis for system dynamics. With this new understanding

of the effects of energy dissipation on Likins-Pringle in hand, we have a unique contri-
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bution to science. It is reasonable to now use the oblate rigid body L-P configurations

to create initial conditions for the multi-body system model.

Modeling and simulation of the multi-body system dynamics is the subject of

the next chapter.
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V. Multi-body Formation Dynamics

With the rigid body work completed in the previous chapter, we now turn to

multiple body formations. In this chapter, we develop models of the system

dynamics and use oblate rigid body Likins-Pringle configurations as initial conditions

for these multi-body systems. Next, evaluate the multi-body simulations and modify

the models to deal with challenges as they arise. A main goal of this chapter is to

find an answer to research objective 3: Define and/or determine the existence of an

equilibrium condition for a flexible tethered satellite system with a continuous earth-

facing component.

As with the rigid body work, a build-up approach is followed for the development

of the system models, beginning with a simple two-body system. For each system,

reference frames, coordinates and states are defined, equations-of-motion are derived,

and modular Matlab R© code is written to numerically and graphically demonstrate

the dynamics.

5.1 Two-Body Model Development

The general algorithm that is used for the two-body model is shown in Figure

5.1. We assume a massless, extensible tether connecting two single point masses (mi)

such that mi << M⊕. A breakdown of this diagram, including an explanation of the

constants, states and generalized coordinates is presented in the following subsections.

Define

Constants

Initial Conditions

in Generalized

Coordinates

Convert Generalized

Coordinates to

States

4th Order

Runge Kutte

Integrator EOM

Plots

Convert States

to Generalized

Coordinates

Figure 5.1: Block Diagram for System Model
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5.1.1 Reference Frames and Generalized Coordinates. The relevant coordi-

nate reference frames for the two-body system are shown in Figure 5.2.

b

b3

e1b2

b1

a

r

i2

i1

i3

n

e2

e3

a

b

R

m1

m2

Figure 5.2: Two-Body Reference Frames

The inertial î-frame is the same earth-centered cartesian coordinate frame dis-

cussed in Chapter IV. Once again, the orbit of the two-body system’s center of mass

(CoM) is assumed to be in the inertial î1-̂i2 plane. For our system work, we redefine

our orbit frame (ê-frame) a little differently than we did in the rigid body chapter.

The ê-frame is now centered on the center of mass of our system, and rotates in the

orbit plane about its ê3 axis such that the ê1 axis is always pointing opposite nadir.

The angle ν measures the difference between the î1 axis and the ê1 axis. A third

frame (the b̂-frame) is defined by two rotations from the ê-frame,

Cbe = R2(−β)R3(α) (5.1)

such that the b̂1 axis is always pointed at m1 and b̂2 is always in the orbit plane. The b̂2

and b̂3 axes are both normal to the tether line connecting the two masses. The angles

α and β can be thought of as angular polar coordinates (right ascension/declination)

of m1 relative to the ê-frame. Note that this b̂-frame is not the same as the body

frame used for rigid bodies.

The transformation from the inertial frame to the b̂-frame is given by:
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Cbi = R2(−β)R3(α + ν) (5.2)

For two satellites in three-dimensional space, we would normally want six gen-

eralized coordinates. However, since we are restricting CoM to be in the î1-̂i2 plane,

we have one constraint, therefore only five coordinates are necessary. We define our

generalized coordinates as α, β, ν, ~R⊕, and ρ, where ρ is the the distance between

the two masses, and î ~R⊕ is the inertial position of the system CoM. These are chosen

because they are easy to visualize when defining initial conditions.

5.1.2 Initializing States from Generalized Coordinates. The states of this

two-body model are the inertial positions and velocities of the two masses in the

inertial frame:

~X =
{

~R1
~R2

~V1
~V2

}T

(5.3)

While the generalized coordinates (α, β, ν, ~R⊕, ρ) are easier to visualize, the

inertial positions and velocities are easier to propagate with straight-forward equations

of motion. Therefore, we must convert the initial generalized coordinates, along with

their velocities, to the initial states.

To begin, relative position vectors with respect to the CoM, ri, are defined in

the body frame as:

b̂~r1 =
[

l1 0 0
]T

=
[

ρm2

m1+m2
0 0

]T

(5.4)

b̂~r2 =
[
−l2 0 0

]T

=
[

−ρm1

m1+m2
0 0

]T

(5.5)

where li are the tether lengths for each mass from the system CoM. Since î ~R⊕ is the

inertial position vector of the system CoM, then the inertial position vectors of the
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two bodies, î ~Ri, are

î ~Ri = î ~R⊕ + Cibb̂~ri (5.6)

Similarly, to get the inertial velocities of the two bodies, î~Vi, we use

î~Vi = î~V⊕ + î~vi (5.7)

where î~vi is how ~ri changes with respect to the inertial frame. Recalling the relation-

ship of Equation 4.14, we get

î~vi = î d

dt
b̂~ri = b̂ d

dt
b̂~ri + b̂~ωbi × b̂~ri (5.8)

Since we are assuming our initial conditions will be at a nominal steady-state

tether length, we can assume that ri does not change with respect to the b̂-frame,

therefore b̂ d
dt

b̂~ri = 0.

As with the rigid body, ~ωbi is the inertial angular velocity of the system and can

be expressed in multiple reference frames as

~ωbi = ν̇ î3 + α̇ê3 + β̇b̂2 (5.9)

and in the b̂-frame as

b̂~ωbi = Cbi




0

0

ν̇


 + Cbe




0

0

α̇


 +




0

β̇

0


 (5.10)

where ν̇ is the angular orbit rate of the system around the Earth. We know from

Bate et al. [3] that we can determine specific angular momentum, h, of our two-body

system in a two ways:
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h =
∣∣∣î ~R⊕ × î~V⊕

∣∣∣ = ν̇
∣∣∣î ~R⊕

∣∣∣
2

(5.11)

By re-arranging, it is shown that ν̇ is calculated from our initial reference orbit;

that is, the inertial position and velocity of our system CoM:

ν̇ =

∣∣∣î ~R⊕ × î~V⊕
∣∣∣

∣∣∣î ~R⊕
∣∣∣
2 (5.12)

The approach for selecting initial values for α̇ and β̇ is dependent on the specific

initial configuration being modeled. As it turns out, it is easier for our Likins-Pringle

scenario to re-package α̇ and β̇ into a new value, ψ̇, which is the spin rate of the

system about its own center of mass. This is discussed more in Section 5.1.5.

5.1.3 Equations-of-Motion. With the initial positions and velocities calcu-

lated in the inertial frame, the states can be run through a fourth order Runge-Kutte

numerical integrator (RK4) using the equations-of-motion shown in this section. Re-

calling the state vector, ~X, from Equation 5.3, we need expressions for ~̇X. The first

two equations-of-motion, derivatives of the positions, are obviously:

~̇Ri = ~Vi (5.13)

The derivatives of the velocities are broken out into two categories to assist

“toggling” them on and off in the model: accelerations due to gravity; and accelera-

tions from the tether. The gravity acceleration can be taken from any astrodynamics

text [71,73]:

~̇Vigravity
= ~̈Rigravity

=
−µ⊕∣∣∣~Ri

∣∣∣
3
~Ri (5.14)
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For elastic tethers, they are treated as partial springs, like a bungee cord. That

is, they are springs that can only hold tension, not compression. To model this

we use equations for a damped spring (Equations 5.15 and 5.16), but only engage

those accelerations (forces) when the current distance between the two masses (ρ) is

greater than the unstretched tether length (ρo). The accelerations on each mass from

a spring-damper are:

~̇Vispring
= ~̈Rispring

=





δiKs(ρ−ρo)
mi

(
~r12

ρ

)
if (ρ− ρo) ≥ 0

0 if (ρ− ρo) < 0
(5.15)

~̇Vidamper
= ~̈Ridamper

=





δiµdρ̇
m1

(
~r12

ρ

)
if (ρ− ρo) ≥ 0 and ρ̇ > 0

0 else
(5.16)

where

δi =





1 if i = 1

−1 if i = 2
(5.17)

and Ks is the tether stiffness (or coefficient of elasticity), µd is the tether damping

coefficient, and ~r12 is the vector from m1 to m2 given by

~r12 = î ~R2 − î ~R1 (5.18)

The time rate of change of tether length, ρ̇, is determined by calculating the

projection of ~V12 in the ~r12 direction:

ρ̇ =
~r12 · ~V12

|~r12| (5.19)

where

~V12 = î~V2 − î~V1 (5.20)
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While not as elegant as using energy methods, these equations-of-motion allow

us to easily select/de-select the various accelerations (forces) during the simulations.

5.1.4 Converting States to Generalized Coordinates. As the states are propa-

gated forward in time, it is useful to look at the behavior of the generalized coordinates

(α, β, and ρ). To convert from the states to α, we use

α = tan−1

(
~R1 · î2 − ~R⊕ · î2
~R1 · î1 − ~R⊕ · î1

)
− tan−1

(
~R⊕ · î2
~R⊕ · î1

)
(5.21)

To get β, use ~r12 from Equation 5.18,

β = sin−1

(
~r12 · î3

ρ

)
(5.22)

while ρ is simply the magnitude of ~r12.

5.1.5 Initial Conditions for Likins-Pringle. Recall that it is desirable to use

an oblate rigid body Likins-Pringle configuration to generate the initial conditions for

this multi-body system. To simplify this process, we can make certain choices on the

set-up without loss of generality. Assume our spinning two body system is mimicking

a disk that is initially located some distance out along the î1 axis with a rigid body

cone angle of θ (see Figure 5.3).

In this case, the initial generalized coordinates for the system would be:

î ~R⊕ = X⊕î1

î~V⊕ =
√

µ⊕
|î ~R⊕| î2

ρ = arbitrary

α = 0

β = θ

(5.23)
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Figure 5.3: Two-Body Likins-Pringle Set-up

which can be used to generate the initial state positions from Equation 5.6. Getting

the initial state velocities requires a little more thought. Since we are mimicking an

oblate rigid body that spins at a rate ψ̇, it seems more intuitive to use that variable

in calculating ~ωbi in Equation 5.9 rather than deriving α̇ and β̇. Therefore, the initial

inertial angular velocity of the system and can be expressed in multiple reference

frames as

~ωbi = ψ̇b̂3 + ν̇ î3 (ê3) (5.24)

and in the b̂-frame as

b̂~ωbi =




0

0

ψ̇


 + Cbe




0

0

ν̇


 (5.25)

Recall from Equation 4.40 in the last chapter that the spin rate for a rigid body

in a conical Likins-Pringle equilibria is (repeated here):

ψ̇ = ν̇ cos θ (4 (A− C))/C (5.26)
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However, in the case of a system of bodies connected by elastic tethers, a given

spin rate generates a new value for a steady state tether length ρss as the tether

stretches, which in-turn changes the moments-of-inertia of the system (C and A),

which in-turn generates yet a new spin rate, and so on (Figure 5.4). To generate

a true initial value for ψ̇ss, this calculation loop is iteratively computed until the

difference between successive values of ρss is below some error value.

ssr

Moments

of Inertia

(C,A)

b

im

ssy
n
.

.

Figure 5.4: Likins-Pringle ψ̇ Iteration Loop

The calculation to determine ρss from ψ̇ss is derived by balancing the centrifugal

force with the force of the tether:

mlψ̇2
ss = Ks(ρss − ρo) (5.27)

By re-arranging and noting that l = ρ/2, we get

ρss =
Ksρo

Ks − m
2
ψ̇2

ss

(5.28)

All that remains is a method to calculate the moments-of-inertia from ρss. Get-

ting the axial moment-of-inertia (Csys) is fairly straightforward:

C =
∑

i

mi (rss)
2 =

∑
i

mi

(ρss

2

)2

(5.29)
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Unfortunately, the transverse moment-of-inertia (Asys) of a multi-body system

is not a constant value in the two-body case. In fact, if n is the number of bodies in

the multi-body flat ring system the transverse MOI is:

A⊕
sys =





m (rss)
2 (

n
2

)
n > 2

2m (rss)
2 cos2 σ n = 2

(5.30)

where σ is an arbitrary aspect angle from which the transverse MOI is being calculated

(see Figure 5.5. In other words, for n=2, the transverse moment-of-inertia oscillates as

the system spins relative to the gravity forces, therefore the Likins-Pringle equilibria

will not hold. The derivation of Equation 5.30 is shown in Appendix B.

m1

m2

s

AÅ

Figure 5.5: Two-body Transverse MOI

Since the transverse moment-of-inertia is completely independent of σ for all

n > 2 (as seen in Equation 5.30), we continue the build-up approach by moving on to

a three-body model using many of the same principles used to develop the two-body

model. It also should be noted that a 2-D array (n > 2) is the desired configuration

for this study.
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5.2 Three-Body Model Development

The construction of the three-body model follows closely with the development

of the two-body case in the last section. In fact, the general algorithm used is exactly

the same as the one shown in Figure 5.1. The primary difference, of course, is that

now we have three single point masses (mi) distributed evenly in a ring formation

and connected by massless, extensible tethers (ρij) (see Figure 5.6).

60o

m1

m2
m3

r31

r23

r12

60o

Figure 5.6: Three-Body Ring Formation (assuming Equal Masses)

5.2.1 Reference Frames. The frames from the two-body model are used

once again. The î-frame is still earth-centered inertial and the ê-frame (orbit frame)

is still CoM-centered while rotating by an angle ν about its ê3 axis such that the ê1

axis is always pointing opposite nadir (Figure 5.7).

The b̂-frame is still defined by the two rotations (α and β) from the orbit frame

such that the b̂1 axis is pointed at mass 1, but now the b̂-frame is only going to be used

for determining the initial configuration for the simulations. Instead, a fourth frame

is introduced for observing desired behavior during the simulations: the stroboscopic

frame or ŝ-frame (see Figure 5.8). The stroboscopic frame is called so by Hughes

[20] because, although not fixed in the b̂-frame, it coincides with the b̂-frame after

completing each rotation with respect to the orbit frame.
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Figure 5.7: Three-Body Reference Frames (Set-up)

The best way to visualize the ŝ-frame is start with the orbit frame and simply

do a rotation about the ê2 axis by the angle −β. Essentially, the stroboscopic frame

rotates with the orbit, keeping its ŝ3 axis fixed to the same inertial point in space and

sweeping out a cone around the Earth (the same cone mentioned for conical Likins-

Pringle equilibria). Looking ahead, if a ring formation were to confine its motion to

the ŝ1-ŝ2 plane, we define that motion as “strobo-planar”.

b
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e1
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s1
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i1
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n

, e2

e3

b

R

m1

Figure 5.8: Stroboscopic Frame (for Observation)
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5.2.2 Initializing States from Generalized Coordinates. Since another body

has been added, the state vector must obviously grow by an additional inertial position

and velocity (note that the order has also been changed from the two-body case):

~X =
{

~R1
~V1

~R2
~V2

~R3
~V3

}T

(5.31)

With three satellites, nine generalized coordinates would normally be necessary,

however we have a couple of constraints and other considerations. The first constraint

comes from our restricting the CoM to the î1-̂i2 plane. Next, since we are only

using these generalized coordinates to establish initial conditions, we restrict the three

satellites to the ŝ1-ŝ2 plane. Finally, we assume that all three tethers start at the

same length. Therefore, we have a total of four constraints, which means the five

generalized coordinates from before can once again suffice (α, β, ν, ~R⊕, ρ), although

now ρ accounts for all three distances between the objects.

As with the two-body case, we want to initialize this state vector by converting

from the familiar set of easily assignable generalized coordinates and their respective

velocities to the vectors in Equation 5.31. All of the conversions for three-body

scenarios are identical to those shown in Section 5.1.2 for the two-body case. For the

assumption that the three objects have equal mass, the only difference is that now

the relative position vectors with respect to the CoM are

b̂~r1 =
[ √

3
3

ρ 0 0
]T

(5.32)

b̂~r2 =
[
−√3

6
ρ ρ

2
0

]T

(5.33)

b̂~r3 =
[
−√3

6
ρ −ρ

2
0

]T

(5.34)

All other general conversion equations from Section 5.1.2 remain unchanged for the

three-body case:
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î ~Ri = î ~R⊕ + Cibb̂~ri (5.35)

î~Vi = î~V⊕ + î~vi (5.36)

î~vi = î d

dt
b̂~ri = b̂ d

dt
b̂~ri + b̂~ωbi × b̂~ri (5.37)

b̂~ωbi = Cbi




0

0

ν̇


 + Cbe




0

0

α̇


 +




0

β̇

0


 (5.38)

ν̇ =

∣∣∣î ~R⊕ × î~V⊕
∣∣∣

∣∣∣î ~R⊕
∣∣∣
2 (5.39)

5.2.3 Initial Conditions for Likins-Pringle. To create the specific scenario

of having the three-body ring formation in the initial set-up that mimics the oblate

Likins-Pringle equilibria (Figure 5.9), the same general process is used from the two-

body case (Section 5.1.5). To visualize the approach, imagine a tuna can (or disk)

in a conical Likins-Pringle equilibria at some arbitrary cone angle. Now paint three

even spaced “dots” on the tuna can such that one of the dots is at the apex of the

can and in the ê1-ê3 plane.

The initial generalized coordinates for the system are still:

î ~R⊕ = X⊕î1

î~V⊕ =
√

µ⊕
|î ~R⊕| î2

ρ = arbitrary

α = 0

β = θ

(5.40)
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Figure 5.9: Three-Body Likins-Pringle Set-up

while the initial inertial angular velocity of the system is still:

b̂~ωbi =




0

0

ψ̇


 + Cbe




0

0

ν̇


 (5.41)

The only change in the three-body Likins-Pringle set-up compared to the two-

body version is in the calculations of the initialization iteration loop shown back in

Figure 5.4. Specifically, the new equation for determining the steady-state tether

length (ρss) for a given spin rate (ψ̇ss) is now

ρss =
Ksρo

Ks − m
3

(
ψ̇ss +

(
ν̇ê3 · b̂3

))2 (5.42)

Furthermore, to calculate appropriate values for the moments-of-inertia from

Equations 5.29 and 5.30, noting that n = 3 and rss=
√

3ρss

3
,

Csys = 3m (rss)
2 (5.43)
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Asys = m (rss)
2

(
3

2

)
(5.44)

In other words, the ratio of Csys:Asys is 2:1. We now have an initialized state

vector that is ready for numerical integration once the equations-of-motion are deter-

mined.

5.2.4 Equations-of-Motion. The states are run through an RK4 numerical

integrator using ~̇X = f( ~X, t) where

~̇Ri = ~Vi (5.45)

~̇Vi = ~̈Ri (5.46)

A number of vectors are defined as shown in Figure 5.10 where ~Ri are vectors

from the inertial frame origin to mass i, ~ri are vectors from the system center of mass

to mass i, and ~rij are vectors from mass i to mass j.

i2i1
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m2

m3

1r
r

2r
r

3r
r

3R
r

2R
r

1R
r

12r
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23r
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31r
r

R
Å

r

Figure 5.10: Three-Body Model Vectors
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As before, the equations for ~̈Ri on each mass are separated into “accelerations

due to gravity” and “accelerations due to the tethers”. The accelerations due to

gravity are unchanged from the two-body case:

~̈Rigravity
=
−µ⊕∣∣∣~Ri

∣∣∣
3
~Ri (5.47)

Likewise, the accelerations due to the tethers are again treated as viscously

damped springs that can only hold tension when stretched beyond ρo:

~̈Rispring
=





δnmKs(ρij−ρo)

mi

(
~rij

ρij

)
if (ρij − ρo) ≥ 0

0 if (ρij − ρo) < 0
(5.48)

~̈Ridamper
=





δnmµdρ̇ij

mi

(
~rij

ρij

)
if (ρij − ρo) ≥ 0 and ρ̇ij > 0

0 else
(5.49)

where

~rij = î ~Rj − î ~Ri (5.50)

ρij = |~rij| (5.51)

ρ̇ij =
~rij · ~Vij

ρij

(5.52)

~Vij is the velocity of mass j with respect to mass i:

~Vij = î~Vj − î~Vi (5.53)

92



www.manaraa.com

The term δnm is simply used to change the direction (sign) of the force acting on the

ith body:

δnm =





1 if n = i

−1 if m = i

0 else

(5.54)

noting that n and m are compared to the subscripts on the relative position vectors

~rij and that n 6= m. For example, if we are applying Equation 5.49 to body i=1, then

δnm will be positive for the forces acting along ~r12 and negative for the forces acting

along ~r31.

Therefore, the complete set of equations-of-motion for the three-body ring for-

mation looks like:

~̇R1 = ~V1 (5.55)

~̇R2 = ~V2 (5.56)

~̇R3 = ~V3 (5.57)

~̇V1 =
−µ⊕∣∣∣~R1

∣∣∣
3
~R1+

Ks(ρ12 − ρo)

m1

(
~r12

ρ12

)
−Ks(ρ31 − ρo)

m1

(
~r31

ρ31

)
+

µdρ̇12

m1

(
~r12

ρ12

)
−µdρ̇31

m1

(
~r31

ρ31

)

(5.58)

~̇V2 =
−µ⊕∣∣∣~R2

∣∣∣
3
~R2+

Ks(ρ23 − ρo)

m2

(
~r23

ρ23

)
−Ks(ρ12 − ρo)

m2

(
~r12

ρ12

)
+

µdρ̇23

m2

(
~r23

ρ23

)
−µdρ̇12

m2

(
~r12

ρ12

)

(5.59)

~̇V3 =
−µ⊕∣∣∣~R3

∣∣∣
3
~R3+

Ks(ρ31 − ρo)

m3

(
~r31

ρ31

)
−Ks(ρ23 − ρo)

m3

(
~r23

ρ23

)
+

µdρ̇31

m3

(
~r31

ρ31

)
−µdρ̇23

m3

(
~r23

ρ23

)

(5.60)

where we select/de-select various components as required for analysis.
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5.2.5 Converting States to Variables of Interest (VOI). At each step in the

integration, we want to save dynamic information in a form that is easy to visualize

and/or important to the evaluation. To accomplish this, the states are converted into

particular “Variables of Interest” (VOI).

The first VOI are the inertial position and velocity of the center of mass of the

system. These are calculated using Equations 5.61 and 5.62.

î ~R⊕ = ~R1
m1∑
i

mi

+ ~R2
m2∑
i

mi

+ ~R3
m3∑
i

mi

(5.61)

î~V⊕ = ~V1
m1∑
i

mi

+ ~V2
m2∑
i

mi

+ ~V3
m3∑
i

mi

(5.62)

The updated î ~R⊕ and î~V⊕ are then used to determine the next VOI: î~ri, the

relative positions of the individual bodies, expressed in the inertial frame; and
î î~vi,

how ~ri changes with respect to the inertial frame, expressed in the inertial frame.

î~ri = î ~Ri − î ~R⊕ (5.63)

î î~vi =
î î~Vi − î î~V⊕ (5.64)

By crossing the individual relative positions with their velocities and summing

the products, we form what we’ll call the “local angular momentum” (~h) of the system

in the inertial frame:

î~h =
∑

i

î~ri ×mi
î î~vi (5.65)

or, if all mi are equal,

î~h = m
∑

i

î~ri × î î~vi (5.66)
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This local angular momentum acts as a sort of “spin axis” for the system, con-

ceptually similar to the rigid body’s spin axis. For “strobo-planar” motion, this local

angular momentum vector lies entirely along the ŝ3 axis. The final set of VOI’s are

the tether lengths (ρij’s) and the tether length rates (ρ̇ij’s) calculated using Equations

5.50-5.52.

These VOI’s, especially the relative positions and local angular momentum, are

the main tool for analyzing the dynamic behavior of the system. Recall that the

equilibrium condition desired is a dynamic state where the nadir projection of the

aperture remains unchanged with respect to a frame that rotates with the orbit (that

is, the spin axis remains fixed or in a closed path in a rotating orbit frame). Therefore,

to aid in our analysis, we take these key VOI’s that are calculated in the inertial (̂i)

frame and rotate them into the two frames that would interest us: the rotating orbit

frame (ê-frame) and/or the stroboscopic frame (ŝ-frame). To rotate into the orbit

frame,

ê~ri = Ceiî~ri

ê~hi = Ceiî~hi

Cei = R3 (ν)

ν = tan−1
(

Y⊕
X⊕

)
(5.67)

Similarly, to rotate into the stroboscopic frame,

ŝ~ri = Csiî~ri

ŝ~hi = Csiî~hi

Csi = R2 (−βo) R3 (ν)

(5.68)

where βo is the initial cone angle (denoted as θ in the rigid body work) as was shown

in Figure 5.8.
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5.3 Initial Three-Body Simulations

With equations-of-motion and a way to determine initial conditions in hand, a

modular Matlab R© model is built for numerical simulation using the same algorithm

as before (Figure 5.1). The specific code is shown in Appendix F.

The Earth’s gravitational constant is assumed to be 398600.4415 km3/
s2 per

Vallado [71]. The three satellites are assumed to be identical, therefore the masses

are all given arbitrary (but realistic) values of 200 kg. The tether stiffness, Ks, is

estimated from the previous work of Pizarro-Chong and Misra [47]:

Ks =
EY Atether

ρo

(5.69)

where EY is the Young’s modulus of the tether and Atether is the cross sectional area.

They assumed that EY is similar to that of Kevlar 29 and the cross-sectional area

of the tether is 1 mm2. For a 10 km tether, Ks ≈ 20 N/m. The damping coefficient

is assumed to be approximately 1/1000 of the stiffness, also based on Pizarro-Chong

and Misra, therefore µd = 0.05. The baseline value for unstretched tether length (ρo)

for these simulations is 10 km. A listing of these key constants is listed in Table 5.1.

Table 5.1: Baseline 3-body Constant Values

Constant Value Based On

µ⊕ 3.986004415 x 108 m3/sec2 Vallado [71]
mi 200 kg typical small satellite size
Ks 20.0 N-m Pizarro-Chong and Misra [47]
µd 0.05 kg/s Pizarro-Chong and Misra [47]
ρo 10.0 km Large Aperture

For analysis, the results of the Matlab R© simulations are presented consistently,

as follows:

• 2-D plot of tether length (ρij) over time. Note: this is simply the distance

between bodies i and j, even though it is called “tether length”.
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• 2-D plot of body distance from system CoM (ri) over time.

• 3-D plot of body positions relative to the system CoM over time – shown in

terms of (ito) the frame of choice (inertial, orbit, stroboscopic).

• 3-D movie of body positions relative to the system CoM over time (not shown

here)

The 3-D output figures also show the tethers connecting the bodies and whether

they are in tension (black) or slack (grey) at any given time. In addition, the local

angular momentum may be shown as a magenta vector. The 2-D plots also show a

“max difference” value, which is the largest separation for that particular variable

after the mid-point of the simulation. The max difference is only listed for the first

item in the legend.

A number of general scenarios are run to verify that the model works properly,

but for brevity’s sake only one example is shown here. In this simple example, the

satellite ring lies completely in the orbit plane (βo = 0 deg) with αo arbitrarily chosen

to be 75 deg. The formation is located at 1.1 DU’s along the î1 axis and is initially

spinning at a modest rate in the orbit plane (α̇ = 5 deg/s, β̇ = 0 deg/s). To show

how the tethers restore themselves and settle out at ρss, the initial tether length ρ(0)

is set to 10.5 km for a ρo of only 10 km. The results of this example verification run

are shown in Figures 5.11 and 5.12.

As can be seen in Figure 5.12, the tethers do in fact restore themselves from

their stretched position to a value of ρss that is consistent with with Equation 5.42.

The system stabilizes with the tethers in tension and in the orbit plane. The local

angular momentum or “spin axis” holds constant (shown by the magenta vector in

Figure 5.11) and normal to the orbit plane.

97



www.manaraa.com

−5

0

5

−5

0

5

0
0.5

1

e
1
 (km)

Satellite Positions & Tethers wrt CoM ito Orbit Frame

e
2
 (km)

e 3 (
km

)

Figure 5.11: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Veri-
fication Example, 400 secs)
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Figure 5.12: Tether Length over Time (3 Body, Verification Example)
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Confident that the model works properly, we begin the investigation of Likins-

Pringle equilibria for the three body system using a build-up approach. The initial

conditions used for Likins-Pringle equilibria are shown in Table 5.2. Recall that

Appendix A shows the development of the rigid body conical L-P equilibria. It also

discusses the stability criteria for those equilibria. Specifically, for our moment-of-

inertia ratio of 2:1 that was determined in Section 5.2.3, the stability range of Likins-

Pringle cone angles is calculated to be −46.4◦ to +46.4◦. For simulations, we choose

a cone angle of β = 40◦ because, within that range, we would like a large projection

of the aperture facing the Earth without getting too close to the stability boundary.

This is the baseline scenario used throughout this research.

Table 5.2: Baseline Initial Condition Variables for L-P.

Variable Value Based On

ρo 10 km Arbitrary
ρ(0) ρo No initial excitation
αo 0◦ Body 1 at top of the “tuna can”
βo 40◦ Stable L-P cone angle for a rigid body

î ~R⊕ 1.1 DU î1 Visualization
î~V⊕

√
µ⊕

1.1DU
î2

î ~R⊕

A separate Matlab R© module (Get-3B-LP-ICs.m), shown in Appendix F uses

these initial conditions and generates the initial state vector per the calculations shown

in Section 5.1.5. The initial state, as defined by the Table 5.2, looks like Figure 5.13

with respect to the orbit frame. In this view, the Earth is off to the left at all times.
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Figure 5.13: Initial Body Positions Relative to System CoM (Orbit Frame, 3 Body,
β=40◦)

5.3.1 L-P Free Flight. The first step is to look at the natural, unperturbed

behavior of the individual bodies without any connecting tethers. That is, given the

initial conditions generated by the rigid body Likins-Pringle equilibria, what is the

resulting satellites motion? The answer is an equilibrium condition – that is, each

satellite’s motion is strobo-planar and periodic. While this is not a tethered solution,

the discovery of an EC is definitely worth exploration before moving on.

Looking at the orbit frame view of the baseline scenario over 10,000 seconds

(about 1.7 orbits), each body follows a planar, repeating ellipsoid (Figure 5.14). In

fact, by looking at the same motion in the stroboscopic plane (Figure 5.15), we see

that these ellipsoids are completely in the ŝ1-ŝ2 plane (strobo-planar). The plot of

“tether lengths” over time is shown in Figure 5.16. Note that “tether lengths” for the

free-flying scenarios are actually just the distances between a pair of satellites.
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Figure 5.14: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Free
Flight, β=40◦, 10K secs)
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Figure 5.15: Body Positions Relative to System CoM (Stroboscopic Frame, 3 Body,
Free Flight, β=40◦, 10K secs)
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Figure 5.16: Tether Length over Time (3 Body, Free Flight, β=40◦)

Over longer periods of time, a slight in-track drift is discernable. Body 1 (red –

starts on the “top” of the formation) drifts forward approximately 48 m per orbit with

respect to the system CoM, while bodies 2 and 3 (blue and green – starting on the

bottom of the formation) drift backward 25 m per orbit. If desired, period matching

can be employed to eliminate the remainder of the drift (shown in Appendix C), but

it isn’t necessary. Even with the slight drift, this strobo-planar, periodic behavior

is precisely the kind of equilibrium condition we desire for this mission, since any

restoring force that might be supplied by the tethers will also be limited to strobo-

planar.

Each ellipse hovers about essentially the same circular reference orbit – the only

difference between the three reference orbits is a shift of true anomaly. For example,

if we take Figure 5.14 and overlay it on an inertial picture (Figure 5.17), we see that

all three reference orbits are identical. If body 1’s (red) orbit position is the baseline,

then body 2’s (blue) orbit position is simply shifted back ( 7km in this case), while
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body 3’s (green) relative orbit position is shifted forward about the same amount. If

desired, one could pick any of the three ellipses and distribute multiple bodies on that

single path, but a few extra computations would be required (this will be addressed

again in Section 6.2.1).

i2

i1

n

orbit

.

n
.

n
.

Figure 5.17: L-P Free Flight Ellipses – True Anomaly Shift

Even more interesting is that these equilibria occur regardless of the cone angle

that is selected for the Likins-Pringle cone as demonstrated in Figures 5.18 and 5.19.

Figure 5.18 shows the same Likins-Pringle free flight set-up with a 25◦ cone angle,

while Figure 5.19 has a 70◦ cone angle. Notice the difference is simply the shape of

the ellipse. Even so, the common thread among all these equilibria is that regardless

of cone angle, the projection of the ellipses on the “in-track/radial” plane is always a

2:1 ellipse. Furthermore, these equilibria hold for any altitude that is attempted.
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Figure 5.18: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Free
Flight, β=25◦, 10K secs)
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Figure 5.19: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Free
Flight, β=70◦, 10K secs)
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To confirm that we are looking at true relative equilibria, we analyze the orbit

periods. From the numerical simulations, we know the orbit periods of body 2 and 3

match perfectly, and the orbit periods of bodies 2/3 match body 1 to within 9/1000

of a second. Therefore, we corroborate our numerical findings with an analytical

comparison of the orbit periods of body 1 and body 2 from the general Likins-Pringle

configuration. The detailed analytical examination of the two periods is shown in

Appendix D, but the bottom line is that the difference in the energies ∆E of the

orbits of body 1 vs body 2 takes the form:

∆E = −1/4
µ⊕
X3⊕

ρ2
o

(
cos2 β + 1/2

)
+O

(
ρ

X⊕

)3

(5.70)

which is a fairly small number (10−5) for low earth orbit (X⊕ = 1.1DU) and apertures

as large as ρo = 10km, regardless of the cone angle (β). Of course, as the altitude

increases or the aperture decreases, the difference in energy gets even smaller. There-

fore, when the total energy of the orbit is, in this case, 10+2, a ∆E of 10−5 yields a

difference in period of:

∆P = 2πµ⊕

(
(−2E)

−3/2 − (−2 (E + ∆E))
−3/2

)
≈ 10−3secs (5.71)

This order of magnitude for ∆P is not only exactly what we see in the numerics,

but it also highlights the insignificance of the difference of the orbit periods, and

therefore the assurance that we do in fact generate an equilibrium condition when we

use Likins-Pringle configurations.

Recall from earlier that the common thread among all the equilibria derived from

L-P initial conditions is that the projection of the ellipses on the “in-track/radial”

plane is always a 2:1 ellipse. This is interestingly similar to the results shown by Sabol

et al. [54] and Yeh and Sparks [61] who claimed that all satellite formation solutions to

Hill’s equations are determined by the intersection of a plane and an elliptic cylinder

of eccentricity
√

3/2. Two specific examples detailed in Sabol were the “Circular” and
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“Projected Circular” formations, both of which can be produced using L-P equilibria

for the initial conditions. To get the “Circular” formation, a L-P cone angle of β=60◦

is used (see Figure 5.20). This case is unique in that: 1) all three bodies map out

a circle in the orbit frame; and 2) it is the only L-P case where all three bodies use

the same reference orbit without a discernible shift in true anomaly (reference Figure

5.17). That is, it is the only case where all three bodies map out nearly the same

circular path without any further computations. The “Projected Circular” formation

is achieved via L-P simply by picking the cone angle β=63.435◦. This value is the

complement of the angle used by Sabol et al., because their inclination is measured

from the opposite direction that our cone angle is measured.
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Figure 5.20: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Free
Flight, β=60◦, 10K secs)

Since our equilibrium conditions (determined from L-P) and Sabol’s equilibrium

conditions (derived from linearized C-W equations) look so similar, it is appropriate

to compare the key calculations in both methods to determine if we have arrived at

the same equilibrium solutions from different perspectives.
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In the Sabol paper, they derive the formation from Hill’s linearized equations of

relative motion and end up with a relation that must be satisfied to effectively “match

the periods” [54]:

ẏ0 = −2nx0 (5.72)

where n is our ν̇, x0 is the displacement of a body along the ê1 axis, and ẏ0 is the

velocity of a body along the ê2 axis. Looking at Figure 5.21, and considering the initial

conditions for body 1 in our Likins-Pringle configuration, we can see then relations

between Sabol’s parameters and ours, namely x0 = r cos β and ψ̇ = ẏ0/r. Therefore,

ẏ0 = −2ν̇r cos β (5.73)

ψ̇ = −2 cos βν̇ (5.74)

b
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Figure 5.21: Relationship of C-W vs L-P parameters

Back in Equation 5.26, we defined the key relation for conical Likins-Pringle

equilibria:

ψ̇ = ν̇ cos θ (4 (A− C))/C (5.75)
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which, for the oblate disk where the MOI are A = C/2, we get

ψ̇ = ν̇ cos θ
(
4
(
C/2− C

))
C−1 (5.76)

regardless of the value for C (axial moment-of-inertia). This reduces to

ψ̇ = ν̇ cos θ (−2) (5.77)

which clearly matches Equation 5.74, therefore we can confidently say that the math

behind both approaches accomplishes the same goal. Furthermore, given all the evi-

dence, it appears that the Likins-Pringle geometric approach to assigning initial condi-

tions for a system creates the same equilibrium conditions that the C-W linearization

solutions approximate.

5.3.2 Strategy for Adding Springs and Tethers. Knowing that the Likins-

Pringle technique creates equilibria for free flying formations, we now continue the

methodical build-up by adding springs and tethers to the same set-up. To do this,

we recognize that there is an array of methods for modeling the connections between

the bodies. The key methods considered are (in order of applicability):

1. Massless Springs. Allows for both tension and compression, but the springs

are not flexible. This is the most like a rigid body. Referring back to Figure 2.11,

this is a precursor to those categories in the spirit of a “build-up approach”.

2. Massless Tethers. Allows only for tension, and the tethers are elastic, but

not flexible. This is the basis for the model that is discussed earlier in section

5.2. It also represents quadrant 2 of Figure 2.11.

3. Flexible Tethers (w/ unbowed ICs). Allowing tension only, these teth-

ers are both elastic and flexible (quadrant 4 of Figure 2.11), but their initial

conditions (ICs) are straight lines between the bodies. Once the simulation
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is running, the tethers bow out due to the spin rate and potentially oscillate

radially.

4. Flexible Tethers (w/ bowed ICs). Elastic, flexible tethers with initial con-

ditions such that they begin the simulation already bowed out in accordance

with the steady state spin rate (also quadrant 4 of Figure 2.11).

In his 2000 paper [66], Tragesser demonstrated that Method 1 produced stable

formations while Method 3 did not. Method’s 2 and 4 were not tried. The instabilities

in Tragesser’s Method 3 may have been caused by oscillations due to the tethers

starting in a straight configuration, then bowing out. Method 4 could possibly be

the solution if the tethers are initially bowed out such that they are already in an

equilibrium. Alternatively, Tragesser’s Method 3 instabilities could have been caused

by the tethers simply because they were elastic, regardless of the initial conditions or

flexibility. That is, perhaps it was the elasticity (not the flexibility) that caused the

instability. In that light, rather than jump right into Method 4, it is useful to first

corroborate Tragesser’s massless springs (Method 1), then look at massless tethers

(Method 2). If the massless tethers work, we can then move to Method 4. If, on the

other hand, massless tethers don’t work, then it is a moot point to study Method 4

as we know it would not work either.

5.3.3 Method 1: L-P Massless Springs. Of the four methods described

above for connecting the formation, massless springs offer the closest behavior to that

of a rigid body. To model massless springs, we use the same model developed earlier

(Section 5.2) but remove the conditional restrictions in Equations 5.48 and 5.49 –

essentially letting the spring provide forces even if the tether length is less than ρo.

The results of massless springs connecting our original baseline scenario (β=40◦) are

shown in Figures 5.22 - 5.24.
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Figure 5.22: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Full
Springs, β=40◦, 10K secs)
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Figure 5.23: “Spring” Length over Time (3 Body, Full Springs, β=40◦)
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Figure 5.24: Distance from System CoM over Time (3 Body, Full Springs, β=40◦)

Clearly, this is the desired equilibrium. The force of the springs keeps the

“tether length” (really the spring length in this case) to within 10cm of ρss (Figure

5.23). The presence of the springs converts the paths of the three bodies from three

individual ellipses (recall Figure 5.14) to a single circularized path as shown in Figure

5.22. The result is that the formation emulates the conical Likins-Pringle equilibria as

though it were very close to being a rigid body. That is, the formation circularizes to

within 6 cm (Figure 5.24) and is strobo-planar (Figure 5.23). Closer examination of

the oscillations in spring length and radial distance show that these correspond to the

changing aspect of gravity gradient forces as the system rotates. When a tether/spring

is closest to vertical, gravity gradient has its largest effect. Alternatively, when the

tether/spring is horizontal, gravity gradient has no effect. Since these three bodies

are evenly spaced, the oscillations will occur 120 degrees out of phase with each other

as shown in Figures 5.23 and 5.24. The overall effect is that the aperture “breathes”

radially by about 6cm.
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As mentioned earlier (Section 5.3), and calculated in Appendix A, not all rigid

body conical L-P equilibria are stable. For our MOI ratio, only cone angles 0◦−46.4◦

would produce stable results for a rigid body. Similarly, the “system with massless

springs” will only produce equilibrium behavior when β is set in that stable range.

Conveniently, our baseline case (β=40◦) fits nicely in that stable range.

On the other hand, when we pick a higher cone angle that corresponds to a L-P

equilibria outside the rigid body stable range, the system does not remain strobo-

planar. For example, consider the L-P case of β=60◦ – the same case that produces

the equivalent of Sabal et al.’s circular formation in free flight. For this higher cone

angle, when we attach our massless springs, we get the response shown in Figures

5.25 and 5.26.
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Figure 5.25: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Full
Springs, β=60◦, 10K secs)
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Figure 5.26: “Spring” Length over Time (3 Body, Full Springs, β=60◦)

As can be seen, the springs keep the bodies separated at the requisite distance

to within 1 meter (Figure 5.26) even for a long time, but the formation orientation

quickly diverges (Figure 5.25). The system is no longer strobo-planar. Even if period

matching is used to correct the slight in-track drift mentioned earlier in the free flight

cases, the system orientation eventually diverges since we are emulating a rigid body

that would be unstable for this Likins-Pringle equilibrium condition. The result is

only cone angles that are based on stable rigid body L-P equilibria, such as our

baseline case (β=40◦) will produce stable configurations for the massless spring case.

5.3.4 Method 2: L-P Massless, Elastic Tethers. The next step is to replace

the springs with massless, elastic tethers. To do this we use the model developed in

section 5.2) without any changes – that is, we honor the conditional restrictions on the

spring/damper such that they only engage when the distance between two bodies is

greater than the unstretched tether length. The results for our baseline case (β=40◦)

are shown in Figures 5.27 and 5.28.
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Figure 5.27: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Mass-
less Tethers, β=40◦, 10K secs – Baseline)
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Figure 5.28: Tether Length over Time (3 Body, Massless Tethers, β=40◦ – Baseline)
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With tethers, the formation suffers in two ways: orientation and integrity. First,

the orientation of the formation is undesirable since it does not remain strobo-planar

(Figure 5.27). Second, the formation integrity breaks down in that the individual

tethers slacken and lose the necessary tension to “rigidize” the system. Looking at

Figure 5.28, we notice the first tether to slacken (almost immediately after simulation

start) is ρ23 (blue), followed by ρ12 (red). An explanation for this follows.

The layman’s way of explaining the reason for this slacking is: the gravity

gradient forces are trying to collapse the formation at a higher rate than the spin rate

of the formation can counter. To see this, consider the β=0◦ case and imagine the

initial configuration of these bodies/tethers and the forces acting on them as shown

in Figure 5.29, where ρ23 starts the simulation totally horizontal and the other two

tethers are more vertically oriented.
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Figure 5.29: Why Tethers Initially Go Slack

Fc is the centrifugal force acting radially on the bodies and is tied to the spin

rate. The gravity gradient restoring forces Fr are paired up for each tether, such that
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at this snapshot in time, the green tether (ρ31) is being restored in a clockwise fashion

while the red tether (ρ12) is being restored in a counter-clockwise fashion. The result

is a collapsing of the blue tether (ρ23) unless Fc is big enough to counter Fr.

Note that this visualization for explaining tether slacking is equally valid for

other cone angles, but it is just easier to ’see’ at β=0◦. In addition, by looking at

β=0◦ we can determine a “back-of-the-envelope” calculation of minimum spin rate

to compare with the “Kumar Range” values as presented in Chapter II. From our

simple calculation (shown in detail in Appendix E), we estimate that the spin rate

ratio (SR) must be:

ψ̇

ν̇
< −2.61 or 0.61 >

ψ̇

ν̇
(5.78)

which compares quite nicely with the detailed Kumar Range values of −2.58 and

0.58 [26]. The spin rate ratio (SR) associated with the baseline (β=40◦) case is:

SR =
ψ̇

ν̇
= −1.532 (5.79)

which is not in the range calculated above. For now, we assume that the Kumar

Range represents a lower bound for all possible cone angles, therefore based on spin

rate alone, we would not expect the centrifugal force to counter the gravity gradient

restoring force, and hence we would expect slacking in our horizontal tethers.

Now, go back and look at the tether distances for the baseline tether case in

Figure 5.28. Tether ρ23 does go slack almost immediately as the analysis above would

indicate. Also, with a clockwise rotation, ρ12 is rightfully the next tether to go

horizontal and hence become slack from the lack of centrifugal force/spin rate.

In addition to tether slacking, there is another complication with the integrity

of the tethered formation. As the tethers rotate into a more vertical orientation,

the gravity gradient forces help stretch the tether distances and undo the slack. Un-

fortunately, once the tether distances reach the unstretched tether length (ρo), the
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tethers tend to “snap” back quickly into a slackened state. This behavior is undesir-

able enough for a single tether, but the snapping of any one tether has the additional

unwelcome effect of causing the other two tethers to snap (or decrease their rate of

recovery) as well. This undesirable “snapping interaction” can be seen in Figure 5.28.

Notice that any time a tether reaches 10 km, all three tethers snap simultaneously,

which only promulgates the problem of slacking-snapping even further. Therefore,

our problem of the formation integrity breaking down continues to get worse as the

tether distances drop to almost 3 km within two orbit periods.

The problems of tether “slacking” and the subsequent “snapping interaction”

are present regardless of the cone angle chosen. Essentially, the Likins-Pringle initial

conditions do not generate enough spin rate to keep the tethers taut.

5.3.5 Summary. The results of the initial simulations are summarized in

Figure 5.30. The Likins-Pringle initial conditions in free flight generate strobo-planar,

nearly-periodic, elliptical paths for each body relative to the center of mass for the

system – these equilibrium conditions occur regardless of the cone angle.

The addition of full massless springs circularizes the free flight ellipses and gen-

erates a system-level equilibrium condition, but only for the Likins-Pringle initial

conditions that are associated with stable rigid body equilibria (cone angles less than

46.4◦). For the initial conditions associated with unstable rigid body equilibria, the

system attached with springs can keep its formation integrity, but cannot hold the

desired orientation. Massless tethers do not hold the system in an equilibrium condi-

tion, regardless of cone angle. Tether slacking and the snapping interaction between

tethers (called “snapping” from here on out) causes the formation to lose both its

integrity and its orientation. The basic cause for the tether slack and subsequent

snapping is insufficient spin rate. We can increase the spin rate to maintain forma-

tion integrity, but the orientation suffers as the spin axis no longer stays fixed in the

orbit frame.
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Figure 5.30: Summary of Initial Three-body Results

As mentioned earlier, since massless tethers (Method 2) fail to hold the desired

formation, it is unnecessary to investigate the flexible tether technique (Methods 3

and 4), since we know it would also fail to provide an equilibrium condition. Instead,

a number of strategies to solve the slacking/snapping problem (other than increasing

spin rate) for massless tethers were attempted – these strategies are presented in the

next five sections.
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5.4 Strategy: Non-Linear Spring in Tether Model

One of the first strategies to solve the snapping interaction problem is to make

adjustments to the tether model. Any tether model that would produce a favorable

result could then suggest how to physically build the required tether. Specifically in

this case, instead of modeling the tether as a tension-only linear spring, we consider

a non-linear spring model. The idea here is that by using non-linear spring forces in

the tethers, perhaps we take the “sharpness” out of the response when the tethers

hit the unstretched length limit and therefore decrease the severity of the snapping

interaction that causes further slacking.

To use non-linear spring forces in the tether, the equations-of-motion module in

the code is modified so that the tether forces now obey:

~̈Rispring
=





δnmKs(ρij−ρo)2

mi

(
~rij

ρ

)
if (ρij − ρo) ≥ 0

0 if (ρij − ρo) < 0
(5.80)

where

δnm =





1 if n = i

−1 if m = i

0 else

(5.81)

noting that n and m are compared to the subscripts on the relative position vectors

~rij and that n 6= m.

The results of the baseline case with non-linear tethers is shown in Figures 5.31

and 5.32. By comparing this response to the original linear tether baseline (Figure

5.28), we see that the impact was insignificant. The slacking/snapping still occurs

with the non-linear tethers and the formation still diverges.

119



www.manaraa.com

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
2

3

4

5

6

7

8

9

10

11

ρ
ij
 (tether length) vs. time

Max Difference:  7154.7087  meters

time (sec)

km

ρ
12

ρ
23

ρ
31

Figure 5.31: Tether Length over Time (3 Body, Non-Linear Tethers, β=40◦)
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Figure 5.32: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Non-
Linear Tethers, β=40◦, 10K secs)
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5.5 Strategy: Modify Tether and Formation Parameters

The next strategy to solve the snapping interaction problem is to evaluate the

impact of changing various parameters such as Ks, µd, X⊕, and ρo.

5.5.1 Tether Stiffness. Similar to the rationale for the non-linear spring,

changing the tether stiffness (Ks) may take the sharpness out of the response when

the tethers hit the unstretched length limit and therefore decrease the severity of

the snapping interaction that causes further slacking. Keeping all other parameters

identical to the baseline case, the tether stiffness is changed from 20 kg/s2 to a range

of other values (0.002 - 2000). The simulation results for these new values of Ks are

best shown in the tether length plots (Figures 5.33-5.36) and are compared to the

baseline tether length plot (Figure 5.28).

Decreasing the tether stiffness from 20 to 2 kg/s2 does decrease the severity of

the slacking in the tethers (Figure 5.33), but the snapping interaction is still present.

Likewise, for Ks=0.2 we still see the snapping interaction between tethers but the

resulting slacking is even more attenuated (Figure 5.34).
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Figure 5.33: Tether Length over Time (3 Body, Tethers, β=40◦, Ks=2.0)
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Figure 5.34: Tether Length over Time (3 Body, Tethers, β=40◦, Ks=0.2)

If tether stiffness is decreased too far, such as Figure 5.35 (Ks=0.002 kg/s2),

the snapping interaction problem is mitigated but the tether lengths diverge since the

tethers provide very little constraint.
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Figure 5.35: Tether Length over Time (3 Body, Tethers, β=40◦, Ks=0.002)
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Increasing the tether stiffness didn’t appear to help at all. For Ks=200 (Figure

5.36), we get the same slacking and snapping problem as the baseline and the system

tether lengths definitely diverge at about the same rate as the baseline case. The

results for Ks=2000 are not shown here, but as one might expect, the system goes

unstable very quickly for such a high tether stiffness, spiking out of control within

one-half of an orbit.
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Figure 5.36: Tether Length over Time (3 Body, Tethers, β=40◦, Ks=200)

5.5.2 Damping Coefficient. As with most mechanical systems, higher damp-

ing can be used to attenuate undesirable oscillations. Therefore, the damping coeffi-

cient of the tethers is dialed up from the baseline value of µd=0.05 kg/s to evaluate

the impact on the undesirable snapping interaction. Two examples are shown below

in Figures 5.37 (µd=0.5) and 5.38 (µd=0.9). Comparing these results to the baseline

case (Figure 5.28), we can see that the higher damping does attenuate the severity

of slacking that is produced from each snap. That is, the “dips” in tether length

are more shallow here than in the baseline case. Even so, the snapping interaction

between the tethers is still present and eventually the tether lengths diverge.
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Figure 5.37: Tether Length over Time (3 Body, Tethers, β=40◦, µd=0.5)
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Figure 5.38: Tether Length over Time (3 Body, Tethers, β=40◦, µd=0.9)
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5.5.3 System Altitude. The original choice for system altitude (1.1 DU) is

absolutely arbitrary and is based on typical low earth satellites. Since Likins-Pringle

equilibria change proportionally with altitude, it is reasonable to assume that the

system orientation dynamics will be unaffected by altitude choice. However, it is still

worth looking at other altitudes to discern if there are any appreciable effects to the

slacking/snapping of the tethers, or if nothing else, to demonstrate that there is no

difference. To compare against the baseline of 1.1 DU, we use an altitude on the other

end of the “typical” range for satellites: geosynchronous (6.6 DU). The results are

shown in Figures 5.39 and 5.40.

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

2

4

6

8

10

12

ρ
ij
 (tether length) vs. time

Max Difference:  1677.5569  meters

time (sec)

km

ρ
12

ρ
23

ρ
31

Figure 5.39: Tether Length over Time (3 Body, Tethers, β=40◦, X⊕=6.6 DU)

Notice that we still have the original problems of slacking and snapping interac-

tion in Figure 5.39, although the tether slacking is slightly attenuated compared to the

baseline case (Figure 5.28). As with every other tether scenario, this slacking/snap-

ping not only breaks down formation integrity, but also causes formation orientation

problems (Figure 5.40). Since this higher system orbits, and hence spins, at a much
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Figure 5.40: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Teth-
ers, β=40◦, X⊕=6.6 DU, 100K secs)

slower rate than the low altitude scenario, the simulations for these geosynchronous

altitudes are run for 100,000 seconds in order to show equivalent dynamic responses.

5.5.4 Tether Length. As with altitude, Likins-Pringle equilibria for an oblate

disk change proportionally with the size of the disk. Therefore, one would not expect

the orientation dynamics to be different based on tether length. However, using the

same logic as the altitude section above, the tethers were shortened to 1 km (from

the baseline of 10 km) to see if there are any improvements to formation integrity.

The results for 1 km tethers are shown in Figure 5.41.

As expected, changing the tether length didn’t change the response much. The

slacking and snapping interaction are still present with approximately the same mag-

nitude of slack that we see in the baseline case. In fact, by looking at the first 4000

seconds alone, it appears that the 1 km case may be slightly worse than the 10 km

case.
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Figure 5.41: Tether Length over Time (3 Body, Tethers, β=40◦, ρo=ρ(0)=1 km)

5.5.5 Combining the Best. So far, changing any one of the parameters

mentioned above had varying impact (ranging from insignificant to noticeable) on

mitigating the slacking and snapping interaction. Now, we create an “optimized

case” where the best settings of each individual parameter are used simultaneously

(Table 5.3).

Table 5.3: “Optimized” Formation Parameters.

Parameter Value

Ks 0.2 kg/s2

µd 0.5 kg/s
X⊕ 6.6 DU
ρo 10 km

The results for these “optimized” parameters are shown in Figures 5.42 through

5.46.
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Figure 5.42: Tether Length over Time (3 Body, Tethers, β=40◦, Optimized Param-
eters)
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Figure 5.43: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Teth-
ers, β=40◦, Optimized Parameters, 100K secs)
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Clearly, by combining the best of these parameters, we see that the initial slack-

ing remains unchanged, but the sharpness of the snapping interaction is significantly

reduced and therefore the magnitude of subsequent tether slacking is greatly atten-

uated. Each tether manages to return to the unstretched length and stay there for

approximately 3 hours. While not quite perfect, even the orientation of the formation

remains strobo-planar for the first orbit (Figure 5.43).

Even so, there is still some snapping interaction between the tethers and even-

tually the formation begins to collapse into a purely vertical gravity gradient shape

(as shown in Figures 5.44-5.46). Figure 5.44 shows a snapshot of the formation at

t=460,000 seconds (about 5.4 orbits), where bodies 1 and 3 (red and green) are lower

altitude and librating about nadir and body 2 (blue) is the higher altitude object.

Figure 5.45 shows all body positions for 1 million seconds, so the librating gravity

gradient motion is seen as a blue “blob” on the right (away from the earth), and a

red/green “blob” closer to the earth.
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Figure 5.44: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Teth-
ers, β=40◦, Optimized Parameters, t=460K s)
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Figure 5.45: Body Positions Relative to System CoM (Orbit Frame, 3 Body, Teth-
ers, β=40◦, Optimized Parameters, 1M secs)
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Figure 5.46: Tether Length over Time (3 Body, Tethers, β=40◦, Optimized Param-
eters)

130



www.manaraa.com

5.6 Strategy: Four-Body Hub-and-Spoke

The next idea for mitigating the snapping interaction between tethers is to look

at radial configurations as opposed to the baseline ring configuration. With a radial

configuration, the ring tethers are removed and the bodies are connected in a hub-

and-spoke (H-A-S) fashion where the tethers represent the spokes emanating from a

massive master hub in the center of the formation as shown in Figure 5.47.

m1

m2
m3

Hub (m4)

Figure 5.47: 4-Body Hub-and-Spoke Formation

5.6.1 Rationale for Radial Configurations. In a ring scenario, the ring

tethers create direct interaction between the peripheral bodies. The concept behind

a H-A-S formation is that a relatively large hub with much more mass than the

peripheral bodies would act as a damper and attenuate the inter-tether snapping that

is seen in the ring formations. Furthermore, Pizarro and Misra determined that the

hub-and-spoke configuration could be made stable when four bodies are used [47].

They found that greater than four bodies required ring tethers to be added to the

H-A-S system for stability.

5.6.2 Model Development. The model development for the 4-body H-A-S

is very similar to that of the original 3-body model. The main difference is that six

new states are added: inertial position (~R4) and velocity (~V4) vectors for the hub.

Therefore, the new state vector is

~X =
{

~R1
~V1

~R2
~V2

~R3
~V3

~R4
~V4

}T

(5.82)
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All equations from Sections 5.2.2-5.2.5 are still applicable with the following

exceptions or additions:

• The hub is assumed to start at the system’s center of mass, therefore the initial

state for ~R4 and ~V4 are ~R⊕ and ~V⊕, respectively.

• Re-converting the states at each step into ~R⊕ and ~V⊕ are the same equations as

before, but they will require additional terms for the hub.

î ~R⊕ =
∑

i

~Ri
mi∑
i

mi

(5.83)

î~V⊕ =
∑

i

~Vi
mi∑
i

mi

(5.84)

• The relative position vectors with respect to the CoM (~ri) are defined the same,

but we no longer care about the distances between the peripheral bodies (ρij).

Instead, we pick up three new vectors from the hub to the outer bodies (~r4i)

that correspond to the radial tethers (Figure 5.48). These are calculated by:

~r4i = ~Ri − ~R4 (5.85)

m1

m2
m3

Hub
m4

1r
r

2r
r

3r
r

41r
r

42r
r

43r
r

4r
r

Figure 5.48: 4-Body Hub-and-Spoke Vectors of Interest
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• Equations 5.48-5.52 are once again used but now we substitute |~r4i| for all ρij

and now the unstretched tether lengths are |~ro|.

• The new acceleration equations of motion for the 4-body H-A-S system are:

~̇Vi = −µ⊕
|~Ri|3

~Ri − Ks(|~r4i|−|~ro|)
mi

(
~r4i

|~r4i|

)
−

µd

(
~r4i·(~Vi−~V4)

|~r4i|
)

mi

(
~r4i

|~r4i|

)
for i = 1, 2, 3

(5.86)

~̇V4 =
−µ⊕∣∣∣~R4

∣∣∣
3
~R4 +

3∑
i=1

Ks(|~r4i| − |~ro|)
m4

(
~r4i

|~r4i|
)

+
3∑

i=1

µd

(
~r4i·(~Vi−~V4)

|~r4i|

)

m4

(
~r4i

|~r4i|
)

(5.87)

With the new model built, the original 3-body Matlab R© code is modified

to accommodate the above equations. The choice of values for the masses is fairly

arbitrary. For these runs, m1=m2=m3=25 kg and m4=300 kg. The plots are slightly

different for these hub-and-spoke simulations. While the individual body positions

with respect to the CoM in the desired reference frame are plotted as before, the

tether length is now shown as the body distance from the hub. Notice that the body

position plots also have the “local angular momentum” vector (shown in magenta)

and the position of the hub (shown in black).

5.6.3 4-Body H-A-S Results. To verify the new model/code works properly,

we begin with a Thomson equilibrium condition discussed in Chapter II where the

system spins at a modest rate in the plane of the orbit (β=0◦, SR=8.123). Notice

the Spin Rate Ratio (SR) is well outside the “Kumar Range”. This verification run

is shown in Figures 5.49-5.51. As expected, the formation holds its circular integrity

in the orbit frame and the hub (shown in black) does not move very much as shown

in Figure 5.49.
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Figure 5.49: Body Positions Relative to System CoM (Orbit Frame, 4-Body H-A-S,
Tethers, β=0◦, SR=8.123, 100K secs)

Close examination of the body distances from the hub show that they settle

down into a small oscillation with an amplitude of less than 10 centimeters. Figure

5.50 shows the first 1000 seconds, while Figure 5.51 shows the entire run (100,000

seconds). As was discussed with the massless spring earlier, this small oscillation is

due to the changing aspect of gravity gradient forces as the system rotates.
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Figure 5.51: Tether Length over Time (4-Body H-A-S, Tethers, β=0◦, SR=8.123)
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As we slow the spin rate of the system by an order of magnitude, the spin ratio

becomes 0.812, but is still outside the “Kumar Range” (-2.58 to 0.58). Even so, the

results (shown in Figures 5.52 and 5.53) are mixed. On one hand, the tethers no

longer have the snapping interaction problem. They completely stabilize at about

10 km in length, and even when an individual tether slacks/recovers/snaps again, it

does not cause slacking in the other tethers (Figure 5.52). Despite this positive effect,

the problem can be seen in Figure 5.53 – the formation completely breaks down.

Each individual body swings around the hub fairly independently and the hub itself

moves a great deal. The original equilateral triangle ring collapses into a librating,

vertically-oriented, gravity gradient pendulum.
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Figure 5.52: Tether Length over Time (4-Body H-A-S, Tethers, β=0◦, SR=0.812)

We now apply conical Likins-Pringle conditions to the 4-Body H-A-S configu-

ration: β=40◦ and SR=-1.532. As discussed before, this SR falls inside the “Kumar

Range”. Once again, the tethers stabilize in length, and the snapping interaction

between tethers is minimal (Figure 5.54). The problem is still that the formation
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Figure 5.53: Body Positions Relative to System CoM (Orbit Frame, 4-Body H-A-S,
Tethers, β=0◦, SR=0.812, 100K secs)
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Figure 5.54: Tether Length over Time (4-Body H-A-S, Tethers, β=40◦, SR=-1.532,
L-P)
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breaks down (Figure 5.55). Individual bodies continue to swing independently and the

hub motion is still dramatic. As before, the original equilateral triangle ring collapses

into a set of librating, vertically-oriented, gravity gradient pendulums.
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Figure 5.55: Body Positions Relative to System CoM (Strobo Frame, 4-Body H-A-
S, Tethers, β=40◦, SR=-1.532, L-P, 100K secs)

Essentially, the benefit of the H-A-S system is freedom for each body to rotate

about the hub fairly independent of the other bodies. Unfortunately, while this solves

the snapping interaction problem, it creates a totally different one.

Other 4-body H-A-S scenarios are attempted but not shown here (higher alti-

tude, full springs, higher hub mass, period matching, “Circular Formation” IC’s, etc.).

All of these have the same basic results: fixes snapping, but can’t maintain the for-

mation. In fact, most of the H-A-S attempts successfully stabilize tether length very

well, but only as the system collapses into a gravity gradient pendulum arrangement.
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5.7 Strategy: Six-Body Ring

The next idea for mitigating the snapping interaction between tethers is to add

more bodies to the original 3-body ring formation. The rationale, model modifications,

and results of a six-body ring formation are discussed below.

5.7.1 Rationale for Additional Ring Satellites. It is hypothesized that the

cause of snapping interaction between tethers (where the slacking, recovery, and sub-

sequent snap of one tether has a snapping effect on the other tethers) is due to the

geometry of the 3-body configuration itself. Consider the diagram in Figure 5.56,

where three bodies are connected by distances a, b, and c. Without loss of generality,

let’s say all three tethers are slack. Furthermore, for the sake of argument, let’s also

say bodies 1 and 2 remain fixed while body 3 drifts slightly to take up the slack. Now

consider the relationship of the distance rates. Distance c will not change initially as

body 3 moves, but notice that as distance a gets longer so does distance b. Once the

tether between bodies 2 and 3 becomes taut, distance a “snaps” inward which also

causes distance b to snap inward. This correlation is always going to be true as long

as the angle between two tethers (subtended at one of the bodies) is less than 90◦.

m1

m2 m3

a

bc

Subtended

angle

Figure 5.56: Tether Interaction – Subtended Angles < 90◦

Conversely, if the subtended angle between a and b is greater than 90◦ (as shown

in Figure 5.57), then the correlation reverses. Now a growth in a causes a shortening of

b, and a “snap” shortening of a would cause growth in b. We refer to this explanation

as the “subtended angle argument”.
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a

b

Subtended

angle

Figure 5.57: Tether Interaction – Subtended Angles > 90◦

By definition, the subtended angle of a 3-body ring is 60◦, so we expect the

snapping of one tether to have an adverse interaction effect on the other two tethers.

To fix this, we consider the addition of enough extra ring satellites such that the

subtended angle is above 90◦. The smallest number of ring satellites to create a

subtended angle greater than 90◦ is n=5. For simplicity, we add another body for a

total of six as shown in Figure 5.58. Therefore, the subtended angle between any two

ring tethers is 120◦.
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120o

m4

m5
m6

r

r
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r

r b2

b1

Figure 5.58: Six Body Ring Formation
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5.7.2 Model Development. The development for the 6-body model is rel-

atively trivial since it follows perfectly with the development of the original 3-body

model. The only difference is the addition of 18 new states (inertial position and

velocity vectors of the three new bodies), as well as the new initial relative position

vectors with respect to the center-of-mass:

b̂~r1 =
[

ρ 0 0
]T

b̂~r2 =
[

ρ
2

√
3

2
ρ 0

]T

b̂~r3 =
[
−ρ
2

√
3

2
ρ 0

]T

b̂~r4 =
[
−ρ 0 0

]T

b̂~r5 =
[
−ρ
2

−√3
2

ρ 0
]T

b̂~r6 =
[

ρ
2

−√3
2

ρ 0
]T

(5.88)

5.7.3 6-Body Ring Results. Once again the Thomson “starter” case is used

where tether coefficients and lengths are the same as the original baseline, but a 0◦

cone angle and modest spin rate (SR=8.123) are used to validate the model. Figures

5.59 and 5.60 show the behavior of this initial system. Clearly, the system is at least

in a marginally stable equilibrium that maintains a generally circular configuration as

it spins, but the formation does “flex” in and out over the course of the simulation.

This flexing is indicated by the low order oscillation in Figure 5.59 and the thickness

of the band in Figure 5.60.
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Figure 5.59: Tether Length over Time (6-Body Ring, Tethers, β=0◦, SR=8.123)

−10

−5

0

5

10

−10

−5

0

5

10

0
0.5

1

e
1
 (km)

Satellite Positions & Tethers wrt CoM ito Orbit Frame

e
2
 (km)

e 3 (
km

)

Figure 5.60: Body Positions Relative to System CoM (Orbit Frame, 6-Body, Teth-
ers, β=0◦, SR=8.123, 10K secs)
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When we slow the spin rate such that the spin ratio is an order of magnitude

lower (SR=0.812), the flexing motion of the formation becomes much more dramatic.

The full 10,000 second simulation is shown in Figure 5.61, while snapshots of the first

125 seconds are shown in Figure 5.62. It appears that the formation begins to deform

or partially collapse from a hexagon to a box almost immediately after the start of

the simulation. This deformation is caused, once again, by gravity gradient forces

that are stronger than the centrifugal forces created by the spin rate.
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Figure 5.61: Body Positions Relative to System CoM (Orbit Frame, 6-Body, Teth-
ers, β=0◦, SR=0.812, 10K secs)

To understand the nature of this “hex-to-box” deformation, consider the dia-

gram of the 6-body ring only 20 seconds after simulation start (Figure 5.62.b). We

redraw this instantaneous snapshot looking down the ê3-axis as shown by the multi-

colored tethers in Figure 5.63. Also displayed in Figure 5.63 are the individual pairs

of gravity gradient restoring forces from each tether (paired by color) on each body.

For sake of simple explanation, the restoring forces are added up graphically in vector
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Figure 5.62: Body Positions Relative to System CoM (Orbit Frame, 6-Body, Teth-
ers, β=0◦, SR=0.812, Snapshots)
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Figure 5.63: Initial Motion of 6-Body Formation

fashion and resultant “new body positions” are shown with black tethers. These new

body positions correspond quite nicely with the snapshot taken 20 seconds later in

Figure 5.62.c.

One can now imagine that as the spin rate is increased (such as the previous

Thompson case) the centrifugal force will counter the gravity gradient effects and
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keep the formation from collapsing into an “undulating box”, although some flexing

is still present (as shown back in Figures 5.59 and 5.60).

As with other strategies, we now apply conical Likins-Pringle conditions to the

6-Body ring configuration: β=40◦ and SR=-1.532. The result is clearly undesirable

as can be seen in Figures 5.64-5.66. Figure 5.64 is an orbit frame plot of the body

position over the entire 10,000 second simulation, while Figure 5.65 shows snapshots

over the first 250 seconds. Obviously, things begin to break down immediately due

to inadequate spin rate and the result is a complete loss of formation integrity and

orientation. Ironically enough, while there is plenty of tether slacking and snapping,

there is no snapping interaction between the tethers as was predicted for this strategy.

Of course, given the complete breakdown of the formation, this is of little consolation.
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Figure 5.64: Body Positions Relative to System CoM (Orbit Frame, 6-Body Ring,
Tethers, β=40◦, SR=-1.532, L-P, 10K secs)

Several modifications to this strategy are attempted (such as higher altitude,

shorter tethers, and inclusion of period matching), but all result in the same response:

the snapping interaction problem is solved but the formation breaks down.
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Figure 5.65: Body Positions Relative to System CoM (Orbit Frame, 6-Body Ring,
Tethers, β=40◦, SR=-1.532, L-P, Snapshots)
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Figure 5.66: Tether Length over Time (6-Body Ring, Tethers, β=40◦, SR=-1.532,
L-P)
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5.8 Strategy: Seven-Body Closed-Hub-and-Spoke

The next strategy for trying to counter the snapping interaction problem of the

tethered system is to combine two of the previous strategies: add more satellites to

the ring and use spoke tethers in addition to the ring tethers.

5.8.1 Rationale for a C-H-A-S. As mentioned in an earlier section, Pizarro

and Misra determined that the Hub-and-Spoke configuration were stable when four or

less bodies are used, but more than four bodies required ring tethers as well [47]. They

called this combination of H-A-S and ring tethers a Closed-Hub-and-Spoke (C-H-A-

S) configuration. Given Pizarro and Misra’s findings, a combination of the last two

strategies is attempted. Three additional ring satellites (for a total of six) are used to

address the “subtended angle argument” while a central hub body and spoke tethers

are added to potentially attenuate inter-tether snapping (Figure 5.67). Essentially,

the benefits of a hub-and-spoke system can be enjoyed, without the complication of

each satellite swinging freely about the hub (as seen in the pure hub-and-spoke case

without ring tethers).

spoke

tethers

Hub

ring

tethers

Figure 5.67: 7-Body Closed-Hub-and-Spoke System

5.8.2 Model Development. As with the 6-body model, the development of

the 7-body model is somewhat trivial, because it simply involves combining the prin-

ciples from the 4-body H-A-S case (for the spoke tethers’ EOM and the addition of a
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hub) and the 6-body ring case (for the additional bodies and ring tethers’ EOM). Spe-

cific modifications to the original 3-body Matlab R© model are found in the previous

two sections.

5.8.3 7-Body C-H-A-S Results. For these simulations, the hub is given a

mass of 300 kg while the other six ring bodies are 25 kg masses. As with all the other

strategies, the Thomson “starter” case of β=0◦ and SR=8.123 is used to verify this

new model. It is no surprise that this relatively high spin rate system remains stable

for the entire simulation (see Figures 5.68 and 5.69)

10

10.0005

10.001

ρ
ij
 (ring tether length) vs. time

Max Difference:  0.028827  meters

km

ρ
12

ρ
23

ρ
34

ρ
45

ρ
56

ρ
61

10

10.0005

10.001

r
7i

 (spoke tether length) vs. time

Max Difference:  0.057658  meters

km

r
71

r
72

r
73

r
74

r
75

r
76

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2
x 10

−8 r
7
 (hub distance from CoM) vs. time

Max Difference:  2.0958e−008  meters

time (sec)

km

Figure 5.68: Tether Lengths and Hub Movement over Time (7-Body C-H-A-S,
Tethers, β=0◦, SR=8.123)

The ring tethers and spoke tethers both quickly settle into the now familiar,

low-amplitude, 120◦-phased, “breathing” oscillations in tether length created by the

changing aspect of the gravity gradient forces on the spinning formation. This breath-

ing is on the order of a few centimeters – 6 orders of magnitude lower than the aperture

size. Hub motion with respect to the center of mass is also insignificant.
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Figure 5.69: Body Positions Relative to System CoM (Orbit Frame, 7-Body C-H-
A-S, Tethers, β=0◦, SR=8.123, 10K secs)

As before, we next slow the spin rate by an order of magnitude such that

SR=0.812. Even with this slower spin rate, the formation remains stable as shown in

Figures 5.70 and 5.71.
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Figure 5.70: Tether Lengths and Hub Movement over Time (7-Body C-H-A-S,
Tethers, β=0◦, SR=0.812)
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Figure 5.71: Body Positions Relative to System CoM (Orbit Frame, 7-Body C-H-
A-S, Tethers, β=0◦, SR=0.812, 10K secs)

Notice in Figure 5.71 that the final tether positions are shown at the end of

the 10,000 second simulation and that all but two tethers are in tension (black). The

two tethers that are slack (shown as grey) are in the vicinity of being perpendicular

to nadir and as such experience little gravity gradient forces, hence why they go

slack. Observation of the real-time simulation shows that each pair of radial tethers

goes slack (depicted as grey in the figure) as they approach the horizontal, then

returns to tension (depicted as black in the figure) as they become more vertical.

Figure 5.70 shows the low-amplitude “breathing” oscillations as before with very

brief excursions that correspond to the radial tether pairs entering the horizontal

conditional and becoming slack. Refer back to Figure 5.63 to understand the geometry

of this phenomenon.

Despite the small excursions, a spin rate ratio of 0.812 on a 7-body C-H-A-S

system is clearly stable, which is a vast improvement over the 4-body H-A-S and the

6-body ring results for the same spin rate ratio. In fact, the 7-body C-H-A-S system
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is able to maintain a stable Thomson configuration (β=0◦) even for cases where the

SR is just outside the “Kumar Range”. This gives hope for the Likins-Pringle cases,

which have SR’s well inside the “Kumar Range”.

With that optimism in hand, the Likins-Pringle conditions (β=40◦ and SR=-

1.532) are now applied to the 7-body C-H-A-S configuration. Unfortunately, what

results is a complete breakdown, as is clearly seen in Figure 5.72. Perhaps the best

way to see the how the dynamic behavior develops over 100,000 seconds is to look at

several snapshots of the bodies positions as shown in Figure 5.73. From the initial

L-P conditions (Figure 5.73-a), the 7-body C-H-A-S system begins to break down.

Within 10 minutes (about 1/10th of an orbit) the system loses tether tension in all but

the most vertical tethers (Figure 5.73-b). By the time the system has completed one

orbit, the formation has completely collapsed (Figure 5.73-c). Within 6 orbits, the

formation eventually starts to take on a new general shape similar to a “shuttlecock”

with the massive hub librating about the nadir direction and the individual bodies

swinging above in a random manner (Figure 5.73-d). This behavior occurs whether

period matching is used on the initial conditions or not.
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Figure 5.72: Tether Lengths and Hub Movement over Time (7-Body C-H-A-S,
Tethers, β=40◦, SR=-1.532, L-P)
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The 7-body C-H-A-S configuration is further investigated by replacing the teth-

ers with full springs per Section 5.3.3. When this is done, the system behaves as

desired (Figure 5.74).
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Figure 5.74: Body Positions Relative to System CoM (Orbit Frame, 7-Body C-H-
A-S, Full Springs, β=40◦, SR=-1.532, L-P, 100K secs)

However, any combination of tethers in this configuration (whether on the spokes

or rings) results in the formation breaking down. Even using the “optimal” parame-

ters case (Ks=0.2 kg/s2, µd=0.5 kg/s, X⊕=6.6 DU), the system formation integrity

collapses when tethers are used instead of full springs. The obvious bottom line for

the 7-body C-H-A-S is that this configuration is an improvement over both the 4-

body H-A-S and the 6-body ring configurations, but it is still unable to maintain the

original desired formation.
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5.9 Strategy: Select Prograde Likins-Pringle Conditions

Recall from Equation 5.77 that the SR relationship for Likins-Pringle is

SR =
ψ̇

ν̇
= −2 cos β (5.89)

which means that for 0◦ < β < 90◦, the SR is negative and for 90◦ < β < 180◦

the SR is positive. When the SR is negative, we’ll refer to this as a “retrograde”

Likins-Pringle condition. When the SR is positive we’ll call it “prograde”. Up until

now, this research was focused on the retrograde L-P conditions (our baseline cone

angle is 40◦).

Our final strategy for avoiding the adverse effects of slacking/snapping involves

a closer examination of the SR’s and the potential use of prograde Likins-Pringle

conditions.

5.9.1 Torque Required to Precess. To begin, consider the 3-D graph of torque

required to precess a spinning disk (so that the aperture is always facing the earth)

as a function of cone angle and SR (Figure 5.75). This 3-D plot is created using the

equation for required torque:

∣∣∣ ~Mreq

∣∣∣ = ν̇
{
− sin θ

(
Cψ̇ + C cos θν̇

)
+ A cos θ sin θν̇

}
(5.90)

where the C = 20, 000 kg km2, A = 10, 000 kg km2, and the circular orbit altitude is

1.1 DU. The detailed development of this equation is shown in Section 6.3.1.

It is easiest to visualize this plot by breaking down the individual independent

components. For cone angle, imagine a disk over the range of 0◦-90◦. When the

disk is spinning in the orbit plane (β=0◦), there is no precession required therefore

there is no torque required. As β increases for a retrograde SR, the precession cone

that is swept out grows accordingly. Likewise, the torque required for this precession

grows until reaching a maximum at β=90◦. Above 90◦, the precession/torque required
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decreases again until, at 180◦ we are back to a disk spinning in the orbit plane and

no precession/torque is required.
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Figure 5.75: Torque Required to Precess Spinning Disk

The effect of SR on required torque is straightforward: as the absolute value

of the SR increases, so too does the torque required to precess the spinning disk. So

everything discussed about cone angle is scaled with SR. For prograde SR’s we have

an inverted mirror image of the retrograde side – since the spin is in the opposite

direction, the torque required is also in the opposite sense. Beyond cone angles of

180◦, everything is also inverted since the disk is essentially upside down.

5.9.2 Torque Generated by Gravity Gradient. Next, consider the torque

generated on a disk from gravity gradient forces as a function of cone angle. Figure

5.76 shows a disk under the effects of gravity gradient (Fgg) and the resulting restoring

forces (Fr) over a progression of cone angles.
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Notice that when the cone angle is very low (approximately 0◦), Fgg is at its

maximum, but the component of Fgg that constitutes Fr approaches zero. As the

cone angle increases to 45◦, the total Fgg decreases somewhat, but the Fr component

of Fgg increases to its maximum. When β approaches 90◦, the gravity gradient forces

disappear, hence both Fgg and Fr approach zero.
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Figure 5.76: Gravity Gradient Forces Acting on Disks

Mathematically, we can use the equations for gravity gradient torque (Equation

4.31) to find that the amplitude of the torque provided by gravity gradient forces

acting on such a disk reduces to

∣∣∣ ~Mgg

∣∣∣ =
3µ⊕
R3

(C − A) cos β sin β (5.91)

Using our moments-of-inertia and orbit altitude from the last section, we can plot the

gravity gradient torque versus cone angle (Figure 5.77). This torque is completely

independent of the instantaneous spin rate of the disk.
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Figure 5.77: Gravity Gradient Torque vs Cone Angle

5.9.3 Graphical Explanation of Likins-Pringle. Going back to the 3-D graph

of required torque, we superimpose the torque generated by gravity gradient forces as

shown in Figure 5.78.

Gravity

Gradient

Torque
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A = 10000 kg-km2

Altitude =1.1 DU

Figure 5.78: Torque Required and Gravity Gradient Torques Generated
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Since the gravity gradient torques are independent of spin rate, imagine taking

the gravity gradient torque line and sweeping that constant function along all values of

SR in Figure 5.78. The points of contact that result draw a contour along the original

3-D plot that indicate where the conical Likins-Pringle equilibrium conditions occur

– that is, where 100 percent of the torque required is produced by gravity gradient.

If we project that 3-D contour into the 2-D plane of SR vs. cone angle, we get

the Spin Rate Plot shown in Figure 5.79. For this discussion, only cone angles 0◦-180◦

are shown. Notice that the Likins-Pringle equilibria are color-coded based on their

rigid body stability criteria as shown in Appendix A. Specifically, the cone angles

below 46.4◦ or above 133.6◦ are stable (shown as blue in Figure 5.79) while all other β

correspond to unstable equilibria (shown as red). The mesh colors on the Spin Rate

unsta
ble

L-P: 100% of Torque Req’d

Produced by GG

L-P: 100% of Torque Req’d

Produced by GG

stable
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Baseline Scenario

(retrograde)
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Kumar RangeKumar Range

Figure 5.79: Spin Rate Plot with Kumar Range
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Plot indicate the torque required to precess a spinning disk at the orbital rate. The red

“peak” and blue “valley” simply indicate a difference in polarization of the required

torque. Also note that the further one gets from the L-P curve the greater the

vertical (out-of-page) differential between what gravity supplies and additional torque

required.

It is important to recognize that Figures 5.78 and 5.79 are specific to the C:A

ratio of 2:1 and are insensitive to orbit altitude. If the orbit altitude is changed, only

the vertical component of the 3-D graph will be affected. That is, the appearance of

the 3-D plot will remain the same, the the scale of the torques will have an inverse

relationship with altitude. For example, increasing orbit altitude results in the same

proportional differential between required torque and gravity gradient torque, however

the absolute magnitude of that difference will decrease. Not only does the vertical

scale of the 3-D plot change with altitude, but any altitude changes would generate

a commensurate change in spin rate to maintain the same ψ̇
ν̇

and remain on the same

Likins-Pringle curve.

Now recall the Kumar Range that says system steady-spin motion only occurs

for SR’s less than -2.58 or greater than 0.58. As stated in section 5.3.4, we initially

assume that this Kumar Range for β=0◦ would apply for all β. This is shown on the

Spin Rate Plot (Figure 5.79) as the magenta lines. Inside this magenta window, we

would expect instability – outside the magenta band we expect steady-spin motion.

5.9.4 Prograde Likins-Pringle Conditions. If the last sentence is true, then

it is no surprise that our baseline scenario (marked on Figure 5.79) does not produce

stable tethered system dynamics, since it is inside the Kumar Range band. Conversely,

the prograde Likins-Pringle equilibria on the right side of the Spin Rate Plot are clearly

outside of the Kumar Range.

By selecting one of these prograde, stable, Likins-Pringle, equilibrium conditions

as shown in Figure 5.79, we might expect better results than the baseline case. To
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this end, the original model is simulated using a cone angle of β=140◦. The results

are shown in Figures 5.80 and 5.81.
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Obviously, there is no improvement. In fact, close examination shows that

the response for β=140◦ is almost identical to the baseline response (Figures 5.28 and

5.27). Tether slacking and the snapping interaction between tethers is equally present

in both cases. The only difference is the that the initial “pitch” of the formation is

mirrored with respect to the orbit plane. Additional prograde cases are run using full

springs in place of tethers as well as higher cone angles closer to 180◦. All of these

scenarios produce the same (mirrored) results as the initial retrograde simulations in

Section 5.3.

This means two things: 1) the strategy of changing the Likins-Pringle criteria

to the prograde side does not work; and 2) the “Kumar Range” is not constant for

all cone angles.

5.9.5 How the “Kumar Range” Changes. Since we now know that the

“Kumar Range” is not constant over all cone angles, it would be nice to know exactly

how it changes with β.

First, we make some observations. Recall from Section 2.1.3 that the “Kumar

Range” is defined as the range of spin-to-orbit rate ratios between -2.58 and 0.58.

Note that the central value of that range (SR=-1.0) corresponds a situation where

the spin of the system exactly counters the apparent spin due to the rotation of the

orbit frame, keeping the system inertially fixed. Mathematically, this comes from the

fact that for the cylindrical case (β=0◦), the orbit rate contributes 100 percent of

its rotational energy to the inertial “spin rate” of the system (see Appendix E for

an example of this). The “Kumar Range” then is symmetric about SR=-1.0 by +/-

1.58. So, for instance, when the SR is at -0.8, the system is spinning in the negative

direction with respect to the orbit frame, but inertially the system is rotating in a

positive direction.

On the other hand, as the cone angle increases, less than 100 percent of the

orbit rate gets included in the spin rate, so that the symmetry value starts to migrate

from -1 towards 0. When the cone angle reaches 90◦, the symmetry of the SR range
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would be about 0. As we continue to increase the angle cone past 90◦, the symmetry

value switches polarity and eventually settles at +1 for θ=180◦.

With this general observation in hand, we next look at analytically deriving the

“Kumar Range” for β 6= 0◦. Unfortunately, when Kumar and Yasaka [26] derived

the original “Kumar Range” for β=0◦, they were able to make a number of simpli-

fying assumptions that cannot be made when β 6= 0◦. Without those simplifying

assumptions, the governing equations-of-motion expand into an unruly set of six cou-

pled, non-linear, second degree, second order differential equations. Just one of these

equations has over 130 terms, each with multiple transcendental functions of varying

powers up to fourth order. As a result, the analytic approach to determining the

“Kumar Range” over β 6= 0◦ turns out to be somewhat intractable.

Alternatively, since we have a working model in hand, we can determine the

new, changing, “Kumar Range” or “SR Range” simply by running our original 3-body

model for various cone angles and changing the spin rate ratio (SR) until steady-spin

motion is observed. In doing so, we take “slices” of the Spin Rate plot to see where

the limits of the new “Kumar Range”/“SR Range” really are. Note that steady-spin

motion means that the tethers do not have slacking/snapping interaction problems

and keep the formation integrity intact – it does not speak to orientation issues,

however.

After running nearly 200 additional simulations, enough data is collected to

identify the new limits of the “SR Range” (previously called the “Kumar Range”) for

various slices of β. This new SR Range is shown with magenta in an updated Spin

Rate Plot in Figure 5.82. The original “Kumar Range” is shown in cyan.
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Figure 5.82: Spin Rate Plot with Updated SR Range

Clearly, the numerical results corroborate the original “Kumar Range” for β=0◦,

but they also show that the SR Range is not constant over all β. Also as predicted,

the symmetry of the SR Range migrates from -1 through 0 to +1. Unfortunately, the

width of the band remains somewhat constant as this migration occurs, therefore the

new SR Range of unstable spin rates totally encapsulates the Likins-Pringle conditions

for all values of β. Since the system must reside on the Likins-Pringle curve to produce

the desired motion, this new SR Range means that no equilibrium condition can be

found such that the precession of the formation matches exactly with the orbit rate.

That is, the natural dynamics cannot produce the desired equilibrium condition.

Looking back to research objective 3 – “Define and/or determine the existence

of an equilibrium condition for a flexible tethered satellite system with a continuous

earth-facing component.” – we have determined that the EC does not exist.
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5.10 Summary

In this chapter, we developed models of system dynamics and used oblate rigid

body Likins-Pringle configurations as initial conditions for these multi-body systems.

The main focus was the three-body tethered ring system with variations as appropri-

ate to investigate different solution concepts for finding an equilibrium condition. A

summary of the results are shown in Figure 5.83. Green blocks indicate where equi-

librium conditions were found, while amber blocks indicate where the system could

not maintain an equilibrium.
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Figure 5.83: Summary of Simulation Results

The Likins-Pringle initial conditions in free flight do generate strobo-planar

equilibrium conditions for each body regardless of the cone angle. The addition of

full springs circularizes the free flight ellipses and generates a system-level equilibrium

condition, but only for the Likins-Pringle initial conditions that are associated with

stable rigid body equilibria (β < 46.4◦ or > 133.6◦). For the initial conditions associ-

ated with unstable rigid body equilibria, the system attached with springs can keep

its formation integrity, but cannot hold the desired orientation.

Massless tethers do not hold the system in an equilibrium condition, regardless

of cone angle. Tether slacking and the snapping interaction between tethers cause the
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formation to lose both its integrity and its orientation. The basic cause for the tether

slack and subsequent snapping is insufficient spin rate. If the spin rate is increased to

maintain formation integrity, the orientation would suffer as the spin axis no longer

stayed fixed in the orbit frame. A number of strategies were attempted to solve the

slacking/snapping problem without increasing the spin rate, but as the middle row of

Figure 5.83 shows, none were successful.

A new Spin Rate Plot was generated that shows the regions of the only possible

conditions where a tethered formation could be considered (shown as green in Figure

5.84).

unsta
ble

stable

stable

Snapping

No Snap

No Snap

C:A = 2:1

Figure 5.84: Spin Rate Plot with Possible Operating Regions

The cone angle must be less than 46.4◦ or greater than 133.6◦ (i.e. on the blue L-

P curve along the x-axis) to avoid rigid body instability issues. Also, the Spin-to-Orbit

Rate (SR) must be outside the magenta band to avoid the slacking/snapping issues.

This leaves the four corners of the graph in Figure 5.84. Basically, the closest one
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can get to the desired equilibrium condition for the tethered system is the minimum

distance from one of these regions to the L-P curve, but since these regions never

touch the L-P curve, the desired equilibrium conditions cannot be met for a tethered

system. Note that this Spin Rate Plot is specifically for a MOI ratio of 2:1. Changing

the MOI ratio may have some impact on the exact width of the magenta band as

well as subtle amplitude changes in the L-P curve, but since 2:1 is the most extreme

oblate case for a 2-D array, it is considered the most conservative. Changing other

parameters, such as altitude and unstretched tether length, will yield the same Spin

Rate Plot as above.

Therefore, the bottom line for tethered systems is that an equilibrium condition

for fixed length tethers does not exist. Without a true equilibrium condition, the

only remaining option for creating a continuously earth-facing aperture is to force the

condition using various methods of control... which is the subject of the next chapter.
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VI. Applying Controls to the Tethered System

In the previous chapter, the dynamics of the tethered system were thoroughly ex-

plored and it was determined that no equilibrium condition exists to keep a fixed-

length tethered system in a continuously earth-facing orientation. In this chapter,

attention is now turned to applying some basic control methods to try and force the

system into the desired motion (overcoming the inherent passive instability), even in

the face of perturbations. This chapter, in it’s entirety, represents research objective

4: Apply control schemes to the tethered system to combat perturbations and maintain

desired motion.

There are four basic control methods that are applied in this research:

• Thrust to Mimic Spring Compression

• Programmed Tether Length Reels

• Thrust to Precess High Spin Rate

• Constant Tension Reels

In each case, despite the non-existence of the desired equilibrium, dynamic

conditions are chosen to be as close as possible to the desired equilibrium condition

(or at an alternate equilibrium condition depending on the control method). Controls

and perturbations are selectively added to the original 3-body models from previous

chapters and the Matlab R© code is modified accordingly. The rest of this chapter

discusses the details of the motivation of each method, and the approach of how each

control scheme is implemented and the simulation results.

6.1 Control Method 1: Using Thrust to Mimic Spring Compression

Recall from Section 5.3.3 that massless springs between the satellites offer the

closest behavior to that of a rigid body, and therefore produce the desired equilibrium

condition as long as the cone angle is in the stable rigid body range (below 46.4◦ or

above 133.6◦). The baseline case using full, massless springs was shown back in
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Figures 5.22-5.24. Recall also that the springs took the Likins-Pringle Free Flight

equilibrium presented in Section 5.3.1, and circularized the multi-body ellipses into a

single, circular equilibrium condition. Since tethers essentially make up one-half of a

spring (tension only), the concept for this control method is to use thrusters to supply

the other half of the spring (compression).

Using this control method, we allow the system dynamics to reside neatly on

the Likins-Pringle curve that was shown on the Spin Rate Plot back in Chapter V

(Figure 5.84). This means that the equilibrium condition used as a starting point

for this control method is the multi-body Likins-Pringle Free Flight equilibrium. The

β=40◦ case is chosen without loss of generality.

6.1.1 Model Modifications. Depending on the relative distances between the

two bodies of interest (i.e. connected via a tether), one of three things happens:

1. When the distance is greater than ρo, the tether is in tension and is treated like

a regular spring-damper.

2. When the distance is less than ρo by some threshold distance (Qd), thrusters

are fired to mimic compression forces.

3. When the distance is between ρo and Qd, the two bodies are free flying in a

limited “dead-band”.

The original 3-body model equations-of-motion from Section 5.2 are used when

the tether length is greater than ρo. However, when the tether length is less than ρo,

those original acceleration equations (5.48 and 5.49) are modified. The new “spring”

acceleration EOM used to modify the original Matlab R© code are:

~̈Rispring
=





δnmKs(ρij−ρo)

mi

(
~rij

ρij

)
if (ρij − ρo) ≥ 0

0 else
(6.1)

168



www.manaraa.com

~̈Ridamper
=





δnmµdρ̇ij

mi

(
~rij

ρij

)
if (ρij − ρo) ≥ 0 and ρ̇ij > 0

0 else
(6.2)

~̈Rithruster
=





δmnFt

mi

(
~rij

ρij

)
if ρij < (ρo −Qd)

0 else
(6.3)

δnm =





1 if n = i

−1 if m = i

0 else

(6.4)

where Ft is the thruster force and Qd is the threshold distance below the unstretched

tether length that delays the firing of the thrusters. In the actual Matlab R© code,

Ft is modeled as some proportion of the tether’s spring constant, Ft = KsQt where

Qt and Ks are constants. For this research, it is initially assumed that the thrust is

directed in a straight line toward the corresponding body to most closely represent a

massless spring. Flexible springs would generate more complex (and more fuel costly)

results, and consequently are not investigated.

Updating the Matlab R© model with the new EOM also includes keeping track

of the amount of thrust required over a simulation period. It is assumed that the

thrusters always fire in pairs to create the “spring” effect. At the end of each simula-

tion, the total number of thruster firings is multiplied by the thruster force and the

stepsize to get total ∆V . This calculation is due to the on/off nature of the thruster

firings. Although not accomplished in this current study, variable (or throttleable)

thrust levels could be used to allow the thrusters to behave more spring-like.

6.1.2 Baseline Case Results. Using the now-familiar Likins-Pringle sce-

nario of β=40◦, an initial thruster-tether spring case is built using baseline values for

thruster force (Ft=2.0 kg ·m/s2) and firing delay (Qd=0.1m). All other parameters

are identical to the original 3-body baseline scenario. Perturbations are not yet added.
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The results of this baseline simulation are presented in Figures 6.1 and 6.2. As

with the original massless springs, these thruster-tether springs once again produce the

desired stable equilibrium. The “breathing” oscillations in tether length and radial

distance have some small oscillations and have about twice the amplitude (14cm)

compared to the pure spring results from Figures 5.23 and 5.24, but they are clearly

still bounded. Over the course of the 10,000 second simulation, 6,835 thruster pair

firings were required for a total ∆V of 136.7 m/s.
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6.1.3 Sensitivity to Thrust Levels and Delay Times. An effort is made to

evaluate the sensitivity of changing the thrust levels (Ft) and firing delay times (Qd).

All told, 12 cases are conducted, but figures from only the 4 most illustrative examples

are shown in this section. They are listed below in Table 6.1, along with the baseline

case.

Table 6.1: Case List for Thrust Levels and Delay Times.

Ft Qd

Baseline 2.0 0.1
Case 1 20.0 1.0
Case 2 200.0 10
Case 3 0.2 0.1
Case 4 2.0 0.5

If both are increased Ft and Qd, longer delays are allowed after the tether goes

slack before firing thrusters, but the thrusters have higher output. In this situation,

the system stays stable but the “breathing” oscillations in ρ and ri are much more

noisy and of higher amplitude. Examples of this are shown in Figures 6.3 (Case 1)

and 6.4 (Case 2). In addition, while the number of required burns goes down in

these cases, the total ∆V required goes up dramatically (221 m/s and 4454 m/s,

respectively).

On the other hand, if delay times are decreased too much, the thrusters fire

too soon/often (creating more ∆V than necessary) and if thrust levels are decreased

too much (as in Case 3), the insufficient thrust levels are unable to prevent slacking

(Figure 6.5), which eventually causes instability (Figure 6.6).
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One of the best combinations is found using the original baseline value for

Ft with a slight delay in the timing (Qd=0.5 m) and a decreased step size of 0.1

second. With these values (Case 4), the system once again maintains the desired

stable equilibrium (seen in Figure 6.7), but there is a slight improvement in total ∆V

required: 134.8 m/s.

9.9992

9.9994

9.9996

9.9998

10

10.0002

ρ
ij
 (tether length) vs. time

Max Difference:  0.69732  meters

km

ρ
12

ρ
23

ρ
31

0 2000 4000 6000 8000 10000 12000
5.773

5.7732

5.7734

5.7736

5.7738

r
i
 (distance from CoM) vs. time

Max Difference:  0.41962  meters

time (sec)

km

r
1

r
2

r
3

Figure 6.7: Tether Lengths and Distance from System CoM over Time (Thrusters
as Half-Springs, Ft=2.0, Qd=0.5 – Case 4)

175



www.manaraa.com

6.1.4 Adding Perturbations. The most dominant perturbation for exo-

atmospheric satellites is generated by the second zonal harmonic of the geopotential

(also called the J2 disturbing function). The accelerations on each body due to this

aspherical potential can be developed per Vallado [71] as:

~̈RiJ2
=




−3J2µ⊕R2
⊕(~Ri ·̂i1)

2|~Ri|5
(

1− (~Ri ·̂i3)
|~Ri|2

)

−3J2µ⊕R2
⊕(~Ri ·̂i2)

2|~Ri|5
(

1− (~Ri ·̂i3)
|~Ri|2

)

−3J2µ⊕R2
⊕(~Ri ·̂i3)

2|~Ri|5
(

1− (~Ri ·̂i3)
|~Ri|2

)




for i = 1...3 (6.5)

We approximate perturbing effects on the thruster-tether spring system by

adding these accelerations into the model’s EOM and re-run the baseline simula-

tion. The results show that even under the effects of these perturbations, thrusters

and tethers combining to form a full spring can hold the desired equilibrium very well

(Figures 6.8 and 6.9). The “breathing” oscillations are still held to less than 14 cm

and the total ∆V required is about the same: 135.4 m/s.

This tells us that tethers do in fact help in successfully combating the effects of

perturbations by taking advantage of their inherent passive tension. Furthermore, if

thrusters were required to mimic both sides of a spring, the tethers would effectively

save one-half of the fuel costs. What remains to be seen is the thruster cost for a half

spring as compared to other thruster-only formationkeeping methods. This will be

covered in the next chapter.
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6.1.5 “Optimized” Formation Parameters Case. A final scenario for the

thruster-tether spring incorporates the baseline thruster force and timing delay, J2

perturbations, and the “optimized” formation parameters used in Section 5.5.5 to get

a conservative estimate of how good this control method could get. As a reminder, the

“optimized” formation parameters are shown in comparison to the baseline formation

parameters in Table 6.2. The “optimized” values are simply a combination of the

best performing values when evaluated separately in the uncontrolled case.

Table 6.2: “Optimized” and Baseline Formation Parameters.

Parameter ‘Optimized’ Value Baseline Value

Ks 0.2 kg/s2 20.0 kg/s
µd 0.5 kg/s 0.05 kg/s
X⊕ 6.6 DU 1.1 DU
ρo 10 km 10 km

Since this scenario’s altitude is at 6.6 DU’s, the simulation is run for 100,000

seconds to get a comparative appreciation for the dynamics. Notice in Figure 6.10

that once again the equilibrium holds stable. In addition, the “breathing” oscillations

in Figure 6.11 are much less noisy and the total ∆V required is only 6.14 m/s over

100,000 seconds.
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6.2 Control Method 2: Programmed Reels

Instead of limiting the tethers to a single, fixed, unstretched length, the next

concept involves variable-length tethers where tether reels are programmed to follow

a repeating pattern based on the natural motion of the individual satellites (which

can be pre-computed as will be shown).

6.2.1 Baseline “Single Satellite Ellipse” Equilibrium Condition. Recall from

Section 5.3.1 that the natural, free-flying motion of each individual satellite that starts

in Likins-Pringle conditions is a strobo-planar, repeating ellipsoid (shown again in

Figure 6.12).
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Figure 6.12: Body Positions Relative to System CoM (Orbit Frame, Free Flight,
β=40◦, 10K secs)

We can select one of those ellipses (say the red one from satellite 1), and assign

all satellites to be on that single ellipse by matching the initial conditions of satellites

2 and 3 to the relative state of satellite 1 at arbitrary points in time. Figures 6.13

and 6.14 show an application of this, where all three satellites are following the same

strobo-planar ellipse based on satellite 1’s Likins-Pringle configuration with a 40◦
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cone angle. Remember, that this “Single Satellite Ellipse” still represents a viable

equilibrium condition for all three objects, and is therefore the equilibrium condition

about which this control method will be applied.
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6.2.2 Programming the Reels. Now looking at Figure 6.14, we see that the

relative velocity of each satellite oscillates as it traverses the elliptical path. Obviously,

since the velocities oscillate, so too will the tether lengths (ρij) and radial distances

from the CoM (ri). Recognize that these repeating oscillations are no longer the

“breathing” oscillations from before, but rather are due to the large elliptical path

that is traversed. These repeating oscillations in ρij are the patterns that are used to

program open-loop control on the tether reels for all time.

In our original dynamic model, the decision of whether a spring/tether engaged

was based on comparing the current length (ρ) to a single, fixed unstretched length

(ρo). Under this new control method, current length is compared to a ρo(t) that varies

with the pattern shown in Figure 6.14. So, in actuality, since no tether “reel” shows

up in our model, we program the ρo(t) that is allowed. Therefore, in unperturbed

free-flight, the system should propagate through time without ever required restoring

forces from the tether/spring.

6.2.3 Baseline Case Results. To initially demonstrate this method, the

baseline case of β=40◦ is used as shown above. Clearly, unless we have perturbing

forces acting on the system, the springs/tethers should never engage since they are

completely tracing the “Single Satellite Ellipse” equilibrium condition. It should be

no surprise then, that whether springs or tethers are used, the response is identical

to Figures 6.13 and 6.14.

As we add perturbations, however, the response is not quite so predictable.

Shown in Figures 6.15 and 6.16 are the results of full springs with programmed ρo’s

adhering to the “Single Satellite Ellipse” equilibrium condition. That is, as J2 perturbs

the system, the springs are attempting to restore themselves back to the natural

(albeit variable) programmed lengths. As can be seen in Figure 6.15, the springs are

successful in maintaining the oscillatory patterns for ρij. Unfortunately, the entire

formation “flips” about the nadir direction after approximately one orbit, despite

holding the equilibrium fairly well up to that point (Figure 6.16).
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Obviously, this is a problem: formation integrity remains intact, but formation

orientation completely breaks down. The likely reason for this behavior is that: even

for full springs, as the programmed reels are allowed to change over time, so too do

the MOI’s; since the Likins-Pringle equilibria are fixed for given MOI values, then the

orientation will change in the orbit frame as the MOI’s are perturbed (hence the flip)

– despite the fact that the springs are keeping the formation integrity intact. Since

tethers are essentially half-springs and springs don’t work, it is clear that this control

method will also have the same (or worse) problems with tethers.

6.2.4 Circular Formation Case. There is a particular subclass of this control

method worth considering that is associated with the Circular Formation. Recall from

section 5.3.1 that the Circular Formation is the Likins-Pringle configuration where the

cone angle is 60◦ and all three satellites map out a single circular path (shown again

here in Figure 6.17)
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β=60◦ – Circular Formation, 10K secs)
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When period matching (from Appendix C) is applied to this 60◦ case, a single

circular path still emerges, and the tether lengths (ρij) once again enter a repeating

oscillation, but this time it is not sinusoidal. Instead the repeating oscillation takes

on a unique shape as shown in Figure 6.18. These unique repeating patterns form the

new program for our open-loop ρo(t) controls on each tether/spring.
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Figure 6.18: Tether Lengths and Radial Distance over Time (Free Flight, β=60◦ –
Circular Formation)

As before, without perturbations, the response with programmed reels for the

Circular Formation case (Figures 6.17 and 6.18) looks exactly like the 60◦ Free Flight

results since there is nothing causing deviations from the Free Flight motion.

Next, with perturbations added (even with full springs), we get trouble similar

to the previous 40◦ case: the springs restore themselves back to the natural repeating

pattern (Figure 6.19), thus maintaining formation integrity, but orientation is lost as

the formation begins to tumble after one orbit (Figure 6.20). Once again, since springs

fail to maintain the desired equilibrium, tethers will not fare any better, therefore the

investigation for this control method with tethers need not go any further.
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Figure 6.19: Tether Lengths, Radial Distance, and Velocity over Time (Full Springs,
Programmed Reels – “Circular Formation”, β=60◦, w/ Perturbations)
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6.3 Control Method 3: Thrust to Precess High Spin Rate

One can recall that the basic dynamic challenge for the desired equilibrium con-

dition is a sort of “Catch-22” between spin rate and precession: the correct precession

requires slow spin rates, which causes slacking/snapping; while high spin rates mean

insufficient precession. Chapter V covered many strategies of leaving spin rates low

and trying to deal with the tether slacking/snapping issues. Now we turn it around

by spinning up the system and dealing with the lack of precession.

The approach of this next control scheme is to spin the system at a high enough

rate such that formation integrity is no longer an issue, and now use thrusters to

supply the additional torque required to keep the system in the desired orientation.

Graphically speaking, with regard to the Spin Rate Plot from Chapter V, we are

selecting a dynamic condition in one of the corner operating regions (Figure 6.21).

unsta
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Figure 6.21: Spin Rate Plot with Possible Operating Regions
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This means the system is not starting on an equilibrium condition, but condi-

tions are chosen to get as close as possible to the stable L-P curve while maximizing

cone angle and without entering the SR Range.

Given the complications of applying torques to a flexible system of multiple

bodies, this concept is first applied to an equivalent rigid body to conservatively

estimate the magnitude of the ∆V required.

6.3.1 Required Torques for a Rigid Body . To envision the torque required

to precess a rigid body in the desired manner, consider the oblate disk in Figure

6.22. Notice that we momentarily return to our rigid body orbit frame (êν , êr, ê3) as

described in Chapter IV where êr is always pointed opposite nadir and ê3 is normal to

the orbit plane. Hr and H3 are the orbit frame components of the angular momentum,

~H, due to the spin (ψ̇). Generally, we are looking for the required torque defined in

the orbit frame so that we can then rotate it into the body frame for ease of use in

the rigid body Matlab R© code.

.
y

desired precession (Wp = n )
.

er

e
n

e3

H
r

M
r

Hr

H3

Figure 6.22: Desired Precession and Required Torque for an Oblate Rigid Body

The relation of precession (Ωp) to the applied torque and angular momentum is

given by [73]:

~M = ~Ωp × ~H (6.6)
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The desired motion for this mission application is pure precession about the

ê3-axis at a rate equal to the orbit rate (shown in blue in Figure 6.22):

~Ωp = ν̇ê3 (6.7)

Therefore, from Equations 6.6 and 6.7 we get the required torque:

~Mreq =

∣∣∣∣∣∣∣∣∣

êν êr ê3

0 0 ν̇

0 Hr H3

∣∣∣∣∣∣∣∣∣
= −ν̇Hrêν (6.8)

The applied required torque ( ~Mreq) must be entirely about the -êν-axis to get

the desired precession. This agrees with the “common sense test” since we already

know that gravity gradient forces create a torque entirely about the êν-axis and are

responsible for the pure ê3 precession in Likins-Pringle equilibria. The next step is

to further define the required torque in ê-frame coordinates. That is, we need Hr to

plug into Equation 6.8. Recall from the rigid body work that

b ~H = bIb~ωbi =




A 0 0

0 A 0

0 0 C




b~ωbi (6.9)

Also, from Equation 4.33, we get

b ~H =




A 0 0

0 A 0

0 0 C







sin ψ sin θ cos ψ 0

cos ψ sin θ − sin ψ 0

cos θ 0 1








φ̇

θ̇

ψ̇





(6.10)

and our desired motion is that φ̇ = ν̇ and θ̇ = 0. Therefore,
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b ~H =




A sin θ sin ψν̇

A sin θ cos ψν̇

Cψ̇ + C cos θν̇


 (6.11)

By rotating from the b̂-frame to the ê-frame, we get the angular momentum and

subsequently the required torque (from Equation 6.8), expressed in the ê-frame:

e ~H = Cebb ~H =




cos ψ − sin ψ 0

cos θ sin ψ cos ψ cos θ − sin θ

sin ψ sin θ cos ψ sin θ cos θ







A sin θ sin ψν̇

A sin θ cos ψν̇

Cψ̇ + C cos θν̇


 =




Hν

Hr

H3




(6.12)

e ~Mreq =




−ν̇Hr

0

0


 =




−ν̇
{
− sin θ

(
Cψ̇ + C cos θν̇

)
+ A cos θ sin θν̇

}

0

0


 (6.13)

6.3.2 Rigid Body Model Modifications. The original rigid body model re-

quires the torques to be expressed in the body frame, therefore

b ~Mreq = Cbee ~Mreq =




− cos ψν̇
{
− sin θ

(
Cψ̇ + C cos θν̇

)
+ A cos θ sin θν̇

}

sin ψν̇
{
− sin θ

(
Cψ̇ + C cos θν̇

)
+ A cos θ sin θν̇

}

0




(6.14)

where Cbe is the inverse of Ceb above. If Equation 6.14 is now used to replace the

original gravity gradient torque Equation 4.32 in the rigid body model’s EOM, we now

have a rigid body model that generates the external torque required to precess the
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disk at exactly the orbit rate. This calculation of required torque is independent of

the calculation of the torque created by gravity gradient. Sometimes these two values

will be equal (i.e. Likins-Pringle equilibria), while most times there is a difference

(i.e. the rest of the Spin Rate Plot that is not on the L-P curve).

To validate that the “required torque” is calculated properly, a number of sim-

ulations are run to determine if the desired equilibrium is achieved regardless of spin

rate, cone angle, and mass properties. An example of these validation runs is shown

in Figures 6.23 and 6.24 for a disk spinning at four times faster than the orbit rate

(SR=-4.0), a cone angle of 45◦, and the moments of inertia from arbitrarily chosen to

be A =25 and C =50. Clearly, the desired equilibrium motion is achieved: the disk’s

spin axis precesses inertially (Figure 6.23), but does so such that it never moves in

the orbit frame (Figure 6.24). This response is seen in all cases and validates that

Equation 6.14 is accurate.
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Figure 6.23: ~H, ~ω, and the b̂3-axis in the inertial frame (Oblate Rigid Body, Cal-
culated Torques Required for Precession)
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6.3.3 Determining ∆V Required. As mentioned above, unless the dynamic

conditions put us directly on the Likins-Pringle curve, there will be a difference be-

tween the torque required to “perfectly” precess and the torque provided by gravity

gradient forces. This difference in torques, represented by a vertical differential on

the notional 3-D plot in Figure 5.78, is what must be provided by the thrusters in

this control scheme: ~Mthrusters = ~Mreq - ~Mgg.

To get the ∆V associated with a given torque, we assume the thruster force is

applied continuously at the periphery of the disk of radius rdisk and mass mdisk

~Fthrusters =
~Mthrusters

rdisk

= mdisk∆a = mdisk
∆V

∆t
(6.15)

where ∆t is the step size of the model simulation. Re-arranging, we calculate the ∆V

from a given torque over a single time step as:
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∆V =
~Mthrusters∆t

rdiskmdisk

(6.16)

For example, if we simulate a 600 kg disk with a 5.7 km radius orbiting at a

circular altitude of 1.1 DU, a spin rate ratio of -2.6, and a cone angle of 40◦, we can

generate the torques (and equivalent ∆V ’s) required for perfect precession and the

torques (and equivalent ∆V ’s) generated by gravity gradient as shown in Table 6.3.

The ∆V that would be required from thrusters is the difference and is shown in the

last column of the table.

Table 6.3: Example Torques and ∆V ’s (SR=-2.6, θ=40◦,
rdisk=5.7km, mdisk=600kg, ∆t=10s, Alt=1.1 DU).

Total
Required

Provided
by Gravity
Gradient

Required
by
Thruster

Torque (kg-m2/s2) 32895.41 17049.79
∆V (m/s) 0.095 0.0049

∆V over 10K secs (m/s) 949.53 492.14 457.38

By comparison, if we look at the same disk inclined all the way up to a cone

angle of 90◦, we get the ∆V values shown in Table 6.4. Note that the total torque

required is much higher for the 90◦ cone angle (as expected) and that gravity gradient

forces contribute nothing, therefore the thrusters must do it all.

Table 6.4: Example Torques and ∆V ’s (SR=-2.6, θ=90◦,
rdisk=5.7km, mdisk=600kg, ∆t=10s, Alt=1.1 DU).

Total
Required

Provided
by Gravity
Gradient

Required
by
Thruster

Torque (kg-m2/s2) 60017.78 2.79e-4
∆V (m/s) 0.173 8.07e-13

∆V over 10K secs (m/s) 1732.42 8.07e-9 1732.42
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6.3.4 Rigid Body Results as a Multi-Body System Estimate. Remember

that the whole reason for doing this rigid body work is to conservatively estimate

the magnitude of the thrust required on a multi-body system. Therefore, we need

to select rigid body mass properties that emulate the multi-body system. Using the

tether length of 10 km, the formation radius is calculated at 5.774 km. In addition,

each satellite body is also assumed to have a mass of 200 kg. With these simple

values, the axial and transverse moments of inertia are calculated for the multi-body

system using equations from Chapter V. These MOI’s are readily transferable to the

rigid body model.

Csys = 3m (r)2 = 20, 000kg · km2 (6.17)

Asys = m (rss)
2

(
3

2

)
= 10, 000kg · km2 (6.18)

Now referring back to our preferred operating condition for this control scheme

(identified on the Spin Rate Plot in Figure 6.21), we choose conditions that are as

close as possible to the stable L-P curve while maximizing cone angle and without

entering the SR Range. Specifically, a spin rate ratio of -2.4 and a cone angle of 45◦

are used. These conditions are applied to the rigid body model and the simulation is

run for an altitude of 1.1 DU. The results are presented in Table 6.5.

Table 6.5: Rigid Body Simulating System – Torques and
∆V ’s Required for “Perfect” Precession (SR=-2.4, θ=45◦,
rdisk=5.774km, mdisk=600kg, ∆t=10s, Alt=1.1 DU).

Total
Required

Provided
by Gravity
Gradient

Required
by
Thruster

Torque (kg-m2/s2) 33403.50 17312.82
∆V (m/s) 0.096 0.049

∆V over 10K secs (m/s) 964.19 499.74 464.46
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It is already apparent that we have a problem here. A ∆V of 464.46 m/s that

is required to torque a rigid disk after only 10K seconds (and without the presence of

perturbations) far exceeds the yearly ∆V budgets of most satellites [73]. If we consider

a conservatively high (geosynchronous) orbit altitude, the ∆V cost after 10K seconds

is reduced to 2.15 m/s (Table 6.6), but as will be discussed in the next Chapter, this

cost is still an order of magnitude greater than thruster-only free-flyer budgets.

Table 6.6: Rigid Body Simulating System – Torques and
∆V ’s Required for “Perfect” Precession (SR=-2.4, θ=45◦,
rdisk=5.774km, mdisk=600kg, ∆t=10s, Alt=6.6 DU).

Total
Required

Provided
by Gravity
Gradient

Required
by
Thruster

Torque (kg-m2/s2) 154.65 80.152
∆V (m/s) 4.46e-4 2.31e-4

∆V over 10K secs (m/s) 4.46 2.31 2.15

Furthermore, these ∆V budget assumes a rigid body with continuous thrust/-

torque capability. In actuality, an equivalent multi-body system would not only be

flexible and encounter perturbations, but the thrust could also not be applied contin-

uously. Assuming the thrusters are located on the satellite bodies, a tethered system

would have to wait to fire (or “pulse”) its thrusters until each body is aligned nor-

mal to the êν-axis to ensure the torque is purely about the êν-axis. Both of these

additional complications would translate into even more required thrust, therefore

further investigation into this control concept is unnecessary... it might work for the

system, but it will clearly be too costly since the simplified rigid body approximation

is definitely too costly.
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6.4 Control Method 4: Constant Tension Reels

The final control scheme considered for this system is another variable-length

tether concept. This time, however, each individual tether’s unstretched length (ρo)

is modified to maintain a relatively constant positive tension throughout the simu-

lation. Since each tether experiences varying dynamics effects due to the changing

aspect of the gravity gradient forces on the original spinning formation, this control

concept allows for each tether to individually respond to undesirable tension levels

and hopefully keep all tethers taut at all times. The desired positive tension level is

maintained by reeling-in or paying-out tether, based on current tension levels at each

step in the simulation. By keeping the tethers in positive tension, slacking should be

eliminated.

The nearest equilibrium condition to our desired motion is once again the natu-

ral, free-flying, strobo-planar, repeating ellipsoidal motion of each individual satellite

that starts in the Likins-Pringle conditions. This is therefore the equilibrium condition

about which this control method (variable length tethers) will be applied.

6.4.1 Model Modifications. The original 3-body model used a single, fixed

value for the unstretched tether length (ρo) for all three tethers. In this model, each

tether will have its own unstretched tether length (ρio) that varies over the course of

the simulation. The process for determining those variations in ρio is shown in the

pseudocode in Figure 6.25. The basic idea here is that when a tether is slack, reel it

in, and when the tether is in too much tension, reel it out. The spring-damper from

the original model is still used whenever the tether is in tension.

Another way to look at this is in Figure 6.26 which shows the control response

based on current tether length relative to the current unstretched tether length. Notice

that there is a dead-band based on the size of the tension threshold that is set.

The pseudocode in Figure 6.25 is applied to the equations of motion at each

integration step for each of the three tethers. Appropriate modifications are made in

the Matlab R© model and initial values are chosen for reel rates and tension threshold.
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Figure 6.25: Constant Tension Pseudocode
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Figure 6.26: Tension Control Response
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6.4.2 Initial Constant Tension Results. For the initial case, the tension

threshold (Tthd) is chosen to be 0.2 which equates to a 10 m displacement from the

current ρio. This value is large enough to encapsulate the “breathing” oscillations

seen in the original simulations of Chapter V. The initial reel rates (rrin and rrout)

are chosen to be 1 m/s with a simulation step size of 1 second. All other parameters

are the same as the baseline Likins-Pringle case (β=40◦). The response for this initial

case is shown in Figures 6.27 and 6.28.
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Figure 6.27: Body Positions Relative to System CoM (Orbit Frame, Constant Ten-
sion Tethers, L-P, β=40◦, rr = 1, Tthd = 0.2, ∆t=1, 10K secs)

We know from before that the spin rate for β=40◦ is insufficient to keep all

three tethers in positive tension, so it is no surprise that the tethers tend to reel in

initially. Notice however, that within 1/2 of an orbit, all three tethers are reeled

in until they find a stabilized length around 3.5-3.9 km, essentially shrinking the

formation. Unfortunately, because of conservation of specific angular momentum,

this shrinking of the formation causes the spin rate to increase proportionally, which

in turn makes the formation precess at a higher rate than was originally intended.
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Figure 6.28: Tether Lengths and Radial Distance over Time (Constant Tension
Tethers, L-P, β=40◦, rr = 1, Tthd = 0.2, ∆t=1)

The high precession of this smaller formation is evident as the “ball” at the center of

Figure 6.27 which is in the orbit frame. The magenta circle in the center of the ball

is the tip of the spin axis of the formation as it precesses around. Obviously, this is

not maintaining the desired equilibrium condition which would have a stationary spin

axis in the orbit frame.

Some quick hand calculations based on conservation of the specific angular mo-

mentum

ρ2

(
ψ̇

ν̇

)∣∣∣∣∣
orig

= ρ2

(
ψ̇

ν̇

)∣∣∣∣∣
new

(6.19)

reveal that the new spin rate ratio for this shrunken formation is SR=-11.19, which

is clearly outside the SR Range for β=40◦ shown on the Spin Rate Plot (see Figure

6.21 again), so it not a surprise that the tethers stabilize themselves at the lengths

shown in Figure 6.28.
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6.4.3 Changing the Constant Tension Parameters. A number of additional

simulations are conducted with variations in the tension threshold, reel rates, and

integration step size. Overall, the response is similar to initial constant tension case,

but some of the examples are briefly discussed here.

When the simulation step size is shortened, the tethers stabilize more quickly at

shorter lengths (Figure 6.29) but the overall result is basically the same (Figure 6.30).

This small change in the rate of shortening (and the different stabilizing length) is

expected since a different time step creates new delays in decision times and essentially

makes a slightly different model.
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Figure 6.29: Tether Lengths and Radial Distance over Time (Constant Tension
Tethers, L-P, β=40◦, rr = 1, Tthd = 0.2, ∆t=0.1)

Decreasing the reel rates too much causes the system to behave more like the

original, uncontrolled, baseline Likins-Pringle case. The slacking and snapping inter-

action return because the reels are acting too slowly to make a real difference.
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Figure 6.30: Body Positions Relative to System CoM (Orbit Frame, Constant Ten-
sion Tethers, L-P, β=40◦, rr = 1, Tthd = 0.2, ∆t=0.1, 10K secs)

Increasing the rrout speed doesn’t have much impact on the response since our

scenario generates more slack time than taut time. Increasing the rrin speed obviously

makes the tethers stabilize even more quickly at even shorter lengths.

Increasing the tension threshold simply increases the dead-band, which essen-

tially nullifies its purpose. Decreasing the tension threshold by an order of magnitude

has only a small effect (slightly slower to stabilize at slightly shorter lengths), but

decreasing the deadband by too much causes the formation to break down.

6.4.4 Bottom Line. Overall, the response using constant tension reels is

insensitive to the values for tension threshold, reel rates, and time step: the formation

collapses until a high enough spin rate is achieved to keep tethers taut, but the higher

spin rate creates too high of a precession to be useful for our application. This

undesirable response is observed even without perturbations added, therefore, there

is no need to investigate perturbation effects with this control method.
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6.5 Summary

This chapter covered the development and results of four different control schemes

that were applied to the 3-body tethered system.

Control Method 1 (Thrust to Mimic Spring Compression) used thrusters to

compliment tethers such that the combination would form a full, massless spring.

Even under the effects of J2 perturbations, this method held the desired equilibrium

condition very well. In most scenarios, the nominal thruster budget was approxi-

mately 135 m/s or higher over a 10,000 second simulation. However, when “optimal”

formation parameters were used (section 5.5.5), the total ∆V after 100K seconds was

6.14 m/s.

Control Method 2 (Programmed Reels) used variable-length tethers where tether

reels were pre-programmed to follow a repeating pattern based on the natural motion

of the individual satellites. Two Likins-Pringle-based patterns were explored under

the effects of J2 perturbations: the “Single Satellite Ellipse” pattern and the Circular

Formation pattern. Regardless of the pattern, and even when replacing the tethers

with variable-length springs, this control method did not work. Formation integrity

was maintained satisfactorily, but the desired orientation of the formation was lost

after one orbit.

Control Method 3 (Thrust to Precess High Spin Rate) allowed the system to

have a high enough spin rate to ensure formation integrity was maintained, and used

thrusters to supply the additional torque required to keep the system precessing at the

desired rate (that is, maintain desired orientation). This concept was first applied to

an equivalent rigid body to conservatively estimate the magnitude of the ∆V required.

After only 10K seconds of continuous thrust, 85 m/s of ∆V was required to torque

an equivalent rigid body without the presence of perturbations. Since the rigid body

result was too costly and the system would not be able to improve on that value, the

investigation of this control method for the system was terminated.
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Control Method 4 (Constant Tension Reels) used variable-length tethers where

each individual tether was allowed to reel-in or pay-out in order to maintain positive

tension and eliminate slacking. Regardless of the tension threshold or reel rates se-

lected, the result was basically the same even without perturbations: the formation

collapsed to generate a high enough spin rate to keep the tethers taut, but at the cost

of a precession rate that was too high for the desired application.

Overall, of the 4 control methods applied, two did not work due to formation

orientation issues and two may work well enough, but with a high cost in ∆V . The

evaluation of those costs is part of an overall assessment of the utility of tethered

systems for this mission application, which is the subject of the next chapter.
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VII. Assessing Utility

In this final task, we take all of the results from the previous chapters and discuss

the utility of multi-body tethered systems for the purpose of space-based remote

sensing. Particularly, we are addressing the fifth, final, and broadest objective of this

work: Assess the relative utility of using tethered systems for formation control on

continuous earth-facing aperture clusters.

7.1 Assumptions and Foundational Rigid Body Motion

In making this assessment, a couple assumptions are key. First, we assume that

the portion of the satellite cluster that forms the virtual aperture is distributed in

a “ring” or circular formation to most closely simulate a single large aperture, and

therefore create the best observation plane for the mission. While it is understood

that simpler formations such as a two-body dumbbell configuration could be used,

they are less dynamically challenging and do not produce a true aperture shape, which

is assumed to be desired. Second, given the mission of space-based remote sensing,

it is further assumed that the aperture should continuously face the earth. Given

these assumptions, the foundational rigid body motion that satisfies our criteria is

the conical Likins-Pringle equilibria.

Knowing that we want to build upon stable rigid body motion for the desired

system motion, and understanding that elastic tethered systems are by no means rigid

bodies, we make preliminary assessments of system performance by first evaluating

the behavior of semi-rigid bodies in the presence of energy dissipation.

From the results of Chapter IV, we know that energy dissipation has an adverse

effect on semi-rigid bodies (and hence elastic tethered systems) that originate in a

Likins-Pringle equilibrium. Specifically, given the studied energy dissipation effects,

a prolate Likins-Pringle body fails to achieve long-term stable behavior, therefore so

too would a prolate Likins-Pringle formation fail to achieve long-term stable behavior.

Meanwhile, there is hope for the oblate case. In the long-term, an oblate Likins-Pringle

body settles into a near-“limit cycle”: simple circularized behavior that remains earth-

205



www.manaraa.com

facing, and nearly repeats itself in the orbit frame. The size of this circularized

behavior is about 4◦ in pitch (or “nodding”) and only about 2◦ in yaw. While this isn’t

the perfect equilibrium condition, it is close enough to warrant further exploration of

oblate (only) formations of tethered satellites.

7.2 Tethered-Only System Dynamics

The most direct way for this tethered system to demonstrate its utility for the

space-based remote sensing mission would be to have a natural equilibrium condition

such that the aperture’s spin axis is fixed in the rotating orbit frame. Given the

exhaustive work detailed in Chapter’s V and VI, we can say with reasonable certainty

that the desired equilibrium condition is not maintainable for fixed-length (without

control) or variable-length (controlled) tethered systems.

The problem boils down to a constant battle between spin rate (which affects

formation integrity) and precession rate (which affects formation orientation). Contin-

uously earth-facing apertures require a spin rate that is too slow to maintain positive

tether tension. Tether slacking and the snapping interaction between tethers cause

the formation to lose its integrity and subsequently its orientation, and there is no

apparent method to solve the slacking/snapping problem without increasing the spin

rate. Conversely, tethered systems with higher spin rates keep the tethers taut and

maintain the formation, but do not continuously face the earth because they precess

at too high a rate.

7.3 Thruster Assistance

Since tethers by themselves cannot control the formation in the desired manner,

consideration is given to tethers and thrusters acting in concert with the hope that

the ∆V cost would be lower than thrusters doing formation control alone.

7.3.1 Thrust for Spring Compression. Using the control method where

thrusters and tethers create the combined effect of a massless spring, the desired
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equilibrium condition is maintained, but the total ∆V budget of the thrusters over

10K seconds is typically 135 m/s or more. Even in the case where the tether and

formation parameters are “optimized” to create the closest motion to the desired

equilibrium, the total ∆V budget is 6.14 m/s in 100K seconds. Forecasting this value

out over a year, the total ∆V cost is approximately 1935 m/s.

To get a comparable number for thrusters-only, we look at Sabol et al. [54],

who estimates the ∆V required for a free flying formation using thrusters alone to

perform both stationkeeping and formation maintenance. Sabol estimates the cost

per satellite for a circular formation with a 1 km radius to be 50.4 m/s/yr. This 50.4

m/s/yr breaks out in the following manner:

Table 7.1: Free Flying ∆V Requirements for a Circular Formation [54].

Maneuver ∆V , m/s/yr

Nodal Spacing (formation keeping) 38 (per km of separation)
Perigee Maintenance (formation keeping) 10.9
Drag make-up (station keeping) 1.5
Total 50.4

Based on these results, for a formation comparable to ours, the 38 m/s/yr gets

multiplied by 5.774 km (the average radius of our aperture), yielding a per satellite

nodal spacing cost of 219.4 m/s/yr, and a total ∆V cost of 231.8 m/s/yr per satellite.

Since our formation has three satellites, we triple the last value to get the total yearly

∆V required for a free flying formation that uses thrusters alone: 695.4 m/s.

Clearly, the tether/thruster combination costs almost three times what is re-

quired for thrusters alone! It is also important to appreciate that our “tethers/thrusters-

as-springs” numbers are conservatively low while the thruster-only calculations are

conservatively high. In actuality, the “springs” would not compress in a straight line

since they would have mass and would therefore generate more complex requirements

from the thrusters. Our model also only included J2 perturbations while Sabol in-

cluded earth oblateness, atmospheric drag, and tesseral resonance. The calculations
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based on Sabol are also conservatively high because the assumed 10 km aperture is

not absolutely necessary.

7.3.2 Thrust to Precess High Spin Rate. The other control method using a

thruster/tether combination allowed the system to spin at a high enough rate such

that formation integrity is automatically maintained with the tethers while thrusters

supply the additional torque (normal to the aperture plane) required to keep the

system in the desired orientation.

The estimate of the ∆V magnitude (based on that required to torque a rigid

body disk at 1.1 DU altitude) is 464.46 m/s after only 10K seconds. This number

translates into 268,056 m/s over a year and is without considering perturbations. As

before, this number also far exceeds the comparable costs for the thrusters alone.

Even for the geosynchronous case, the total ∆V is 6780 m/s/yr, which is an order of

magnitude higher than the thruster-alone costs.

7.3.3 Bottom Line. Using thrusters to assist a tethered system to maintain

the desired equilibrium can clearly work, however the cost in ∆V is simply too high

when compared to the stationkeeping/formationkeeping costs associated with a free-

flying, thruster-only formation.

7.4 Breathing Effects

Recall that even with full, massless springs replacing the tethers, we see low-

amplitude (6 cm), 120◦-phased, “breathing” oscillations in the aperture that are cre-

ated by the changing aspect of the gravity gradient forces on the spinning formation.

Since the mission application is space-based remote sensing, we briefly consider the

impact of this “breathing” on the optics.

The importance of relative positions of the individual receivers to optical inter-

ferometry comes from the need for temporal coherence in the received signals. Nor-

mally, optical systems maintain this coherence by equalizing the optical pathlengths
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between the individual receivers and some correlator. This requires the capability to

first accurately measure the optical pathways, and then equalize (control) them to the

order of λ2
o

∆λ
, where λo is the mean design wavelength and ∆λ is the passband for the

system [46].

Therefore, the impact of the “breathing” oscillations would be more dependent

on the ability to rapidly measure and control the optical pathways, than it would be

on the size or nature of the physical oscillations. Since the study of measuring or

controlling the optical pathways is beyond the scope of this research, it is assumed

for this assessment that the appropriate capabilities exist, and that the breathing

oscillations will not impact the utility, but must be corrected for.

7.5 Overall Assessment

An overall look at the utility of tethered systems is broken out across the indica-

tor areas that were studied for this research and summarized in Figure 7.1. Red indi-

cates undesirable utility, green means highly useful and yellow represents a marginal

utility (notice there are no green regions).

Rigid Body w/ Energy

Dissipation
Very close to Limit Cycle No stable, long-term behavior

Natural System

Dynamics

No Equilibrium Condition

(formation integrity vs

orientation)

No Equilibrium Condition

(no stable, long-term behavior)

System w/ Controls Doesn't work or cost prohibitive

Presumed costs even higher

than oblate given rigid body

results

Oblate Structure Prolate Structure

Continuously Earth-Facing Aperture

Figure 7.1: Utility Assessment Indicator Areas
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Given the results of this research, a couple of general statements can now be

made:

• Tethers have great value for formation control on general aperture clusters as

long as there are no restrictions on spin rate. If we suspend the need to be

continuously earth facing, the entire chart above would turn green. In fact,

there-in lies an idea for future study, but this will be discussed in the last

chapter. Unfortunately, one of our initial assumptions for this research is the

requirement for the system to be continuously earth-facing, which bring us to

the next statement.

• Tethers, by themselves, cannot conduct formation control for continuously earth-

facing aperture clusters. No equilibrium condition, no compression capability,

and insufficient spin rate means no utility for this mission without help from

other control methods.

• Even with additional controls (thrusters), tethers add little value for continu-

ously earth-facing apertures. Tether/thruster combinations on oblate systems

are too costly compared to the free-flying, thruster-only formation, and the rigid

body basis for prolate systems is more erratic than the oblate. One could still

investigate the use of controls on prolate systems by skipping right from the

rigid body work directly to controls, but we are reasonably certain there would

be no equilibrium condition found for prolate systems.

This chapter presented the final phase of this research and discussed the last of

five research objectives. A review of all research objectives is conducted in the next

chapter along with recommendations and a review of the contributions.
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VIII. Conclusions

This study examined the utility of tethered systems for the purpose of space-

based remote sensing. A summary of the work that was conducted is presented

below through a review of the research objectives, a discussion of recommendations

for future research, and a highlight of the contributions to science from this work.

8.1 Review of Research Objectives

Objective 1: Determine the effects of energy dissipation on semi-rigid bodies

that are in/near Likins-Pringle dynamic equilibria.

Foundational semi-rigid body dynamics based on conical Likins-Pringle equilib-

ria were investigated and the effects of energy dissipation were found to be adverse for

both oblate and prolate structures. The adverse effects have long-term implications

for the prolate case since it fails to achieve long-term stable behavior. On the other

hand, the destabilizing effect of energy dissipation on the oblate structure is more

short-lived. In the long-term, an oblate semi-rigid body in a Likins-Pringle configu-

ration settles into a near-“limit cycle” with simple circularized behavior that remains

earth-facing, and nearly repeats itself in the orbit frame (see the next objective).

Objective 2: Define and/or determine the existence of an equilibrium condition

for a semi-rigid body with a continuous earth-facing component in the presence of

energy dissipation.

We defined a “perfect” equilibrium condition as a dynamic state where the nadir

projection of the aperture remains unchanged with respect to the rotating orbit frame

– that is, the spin axis would be completely fixed in the orbit frame. By this defini-

tion, no equilibrium condition was found. If we relax our constraint about a perfect

equilibrium and accept (as an equilibrium condition) behavior that is somewhat fixed

in the orbit frame with oscillations that are small, periodic, and simple, then we

can consider the long term oblate L-P response to be an acceptable near-equilibrium

condition for an oblate semi-rigid body.
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Objective 3: Define and/or determine the existence of an equilibrium condition

for a flexible tethered satellite system with a continuous earth-facing component.

After an exhaustive examination of tethered system dynamics, it is shown that

an equilibrium condition for elastic, fixed-length, tethered formations does not exist.

This argument also extrapolates to flexible systems (i.e. tethers with mass). Contin-

uously earth-facing apertures require a spin rate that is too slow to maintain positive

tether tension. Lack of tension causes the formation to destabilize, and there is no

apparent method for correcting this without increasing the spin rate. Conversely,

tethered systems with higher spin rates keep the tethers taut and maintain the for-

mation, but do not continuously face the earth because they precess at too high a rate.

Interestingly, it was discovered that equilibrium conditions are found when conical

Likins-Pringle conditions are applied to a free-flying formation (without tethers). As

it turns out, these are the same equilibrium conditions that are approximated by the

well-known C-W linearization solutions.

Objective 4: Apply control schemes to the tethered system to combat pertur-

bations and maintain desired motion.

Four different control methods were applied to tethered system: two involved

simulating variable-length tether reels and two simulated the addition of thrusters.

The desired equilibrium condition was not maintainable using the variable-length

tethers, as the formation orientation would break down. When thrusters were used to

emulate spring compression, the desired equilibrium condition was maintained, but

the ∆V costs were prohibitive – conservatively estimated to be 3 times more than

using thrusters alone on a free-flying formation. Likewise, if the thrusters were used

to provide external torques to a high spin rate system, the ∆V was estimated to be

another order of magnitude higher than the thruster-only free-flyer.
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Objective 5: Assess the relative utility of using tethered systems for formation

control on continuous earth-facing aperture clusters.

Tethers have great value for formation control on general aperture clusters as

long as there are no restrictions on spin rate. Tethers, by themselves, cannot con-

duct formation control for continuously earth-facing aperture clusters. Even with

additional controls, tethers add little value for continuously earth-facing apertures.

Tether/thruster combinations on oblate systems are too costly compared to the free-

flying, thruster-only formation, and the rigid body basis for prolate systems is more

erratic than the oblate, so there is little hope that the control costs would improve.

8.2 Recommendations for Future Research

It was shown that the prolate semi-rigid bodies suffered more from the effects

of energy dissipation than the oblate structures. As a result, the focus of the tethered

systems portion of this research became the oblate structures. While an equilibrium

condition for a prolate formation is not going to be found (based on oblate results),

it might be useful to skip directly to a control application on a prolate system to

determine if the costs are less than the free-flying, thruster-only formation.

Recall from our assessment on utility, that tethers have great value for forma-

tion control as long as there are no restrictions on spin rate. If we were to relax the

condition that the aperture need to be continuously earth-facing, then we could spin

the system up to a higher rate and tethers would do a fantastic job of maintaining

the formation with almost no stationkeeping costs. The high spin rate would keep the

formation’s spin axis inertially fixed, but from this simple idea we offer the following

concept of operations: create a constellation of a number of these inertially pointed

formations as notionally shown in Figure 8.1. In effect, each formation stays fixed

inertially, and as it orbits the earth the projection of its aperture toward nadir oscil-

lates between a full circle and a line. Some target opportunities will occur when an

aperture coverage is maximized, others when it is minimized. Although not required,
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one could also re-phase the orientation of the inertial spin axis by applying simple

reels and the conservation of angular momentum to change the precession rate.

Figure 8.1: High Spin Rate Constellation Concept

While this concept requires more spacecraft and the spacecraft would require

slewable optics, the cost to maintain the formations would be cheaper. It becomes a

sort-of scheduling/systems engineering analysis and could be explored to determine

the required number of formations in the constellation, necessary orbits, and inertial

aperture orientations to satisfy specific targeting requirements.

8.3 Contributions

This research advanced the knowledge of semi-rigid body dynamics, satellite

formation dynamics, and tethered systems. The following are the unique contributions

of this research to those fields:

• Determined the effects of energy dissipation on structures that are

in/near the Likins-Pringle equilibria. Energy dissipation effects are al-
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ready generally known for rigid-bodies and somewhat investigated for tethered

formations, but no previous work studied the effects of energy dissipation on the

Likins-Pringle equilibria. In particular, this research shed light on the unique

challenge to prolate configurations of tethered clusters in that energy dissipation

will eventually zero-out the aperture’s spin rate.

• Discovered that conical Likins-Pringle rigid body conditions can be

used to generate free-flying satellite formation equilibria. When the

Likins-Pringle geometrical approach to assigning initial conditions for a free-

flying system is used, the results are equilibria that are the same as those ap-

proximated with the C-W linearization solutions. A new perspective was gained

on a previously known relative motion equilibrium condition.

• Numerically defined the steady-spin range of SR = ψ̇
ν̇

for cone angles

other than 0◦. Until now, the steady-spin range was only determined for the

Thompson equilibrium (0◦ cone angle). This is what we have called the Kumar

Range. In this research, we confirmed that the Kumar Range is only valid for

0◦, then numerically determined a new “SR Range” for all other cone angles.

• Provided an overall assessment of the utility of tethers for the purpose

of formation control on continuously earth-facing aperture clusters.

Deep space interferometry studies have shown that tethers can be of great value,

however efforts to demonstrate the utility of tethers for continuously nadir-

pointing systems have been frustrated. This research, taken as a whole, serves

as an explanation to program directors, researchers, and mission engineers on

its limited utility.
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Appendix A. Likins-Pringle Equilibria Development

This appendix covers the detailed development of the conical Likins-Pringle equi-

librium conditions for the rigid body model discussed in Chapter IV. For con-

venience, the reference frames and Euler angles are shown again in Figure A.1.
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Figure A.1: Coordinate Reference Frames and Rotations

A.1 Equilibrium Condition Development

The rotational equations-of-motion for the rigid body follow from Euler’s equa-

tion. They are developed in detail in Section 4.1.2 and are shown again here:

Aω̇1 − (A− C)ω2ω3 = 3µ⊕R−5Y Z(C − A)

Aω̇2 − (C − A)ω1ω3 = 3µ⊕R−5XZ(A− C)

Cω̇3 = 0

(A.1)

where µ⊕ = GM⊕ is the gravitational constant for the Earth, G is the universal

gravitational constant, and M⊕ is the mass of the Earth. X, Y , Z are the body frame
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components of the orbit position vector, ~R. The body frame components of the rigid

body’s angular velocity with respect to the inertial frame are given by

ω1 = φ̇ sin ψ sin θ + θ̇ cos ψ

ω2 = φ̇ cos ψ sin θ − θ̇ sin ψ

ω3 = φ̇ cos θ + ψ̇

(A.2)

By taking the derivative of the equations in A.2, we get

ω̇1 = φ̈ sin ψ sin θ + φ̇ψ̇ cos ψ sin θ + φ̇θ̇ sin ψ cos θ + θ̈ cos ψ − θ̇ψ̇ sin ψ

ω̇2 = φ̈ cos ψ sin θ − φ̇ψ̇ sin ψ sin θ + φ̇θ̇ cos ψ cos θ − θ̈ sin ψ − θ̇ψ̇ cos ψ

ω̇3 = θ̈ cos θ − φ̇θ̇ sin θ + ψ̈

(A.3)

From Equation 4.30 in Chapter IV, the body frame components of ~R are:

X = −R(sνcψcφ− sνcθsψsφ− cνcψsφ− cνcθsψcφ) (A.4)

Y = R(sνsψcφ + sνcθcψsφ− cνsψsφ + cνcθcψcφ) (A.5)

Z = −R(sνsθsφ + cνsθcφ) (A.6)

where s∗=sin∗, c∗=cos∗, and R is the scalar distance from the center of the earth to

the rigid body.

Now introduce the necessary assumptions that arise from the desired equilibrium

condition, which is an axisymmetric body whose spin axis does not move with respect

to the rotating orbit frame. For a circular orbit, this means the cone angle does not
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change over time (θ=constant), and the rate of change in φ remains constant and is

equal to the orbit rate (ν̇), ensuring the spin axis always “faces” the earth. Also, we

can let the orbit angle ν equal the φ without loss of generality, so the first part of

these equilibrium conditions are given by:

θ = const φ = ν

θ̇ = 0 φ̇ = ν̇ = const

θ̈ = 0 φ̈ = ν̈ = 0

(A.7)

For φ=ν, the equations for X, Y , Z reduce significantly:

X = −R(sνcψcν − s2νcθsψ − cνcψsν − c2νcθsψ)

X = R(s2νcθsψ + c2νcθsψ)

X = R(cθsψ) (A.8)

Y = R(sνsψcν + s2νcθcψ − cνsψsν + c2νcθcψ)

Y = R(s2νcθcψ + c2νcθcψ)

Y = R(cθcψ) (A.9)

Z = −R(s2νsθ + c2νsθ)

Z = −Rsθ (A.10)

Furthermore, for a circular orbit, the spin rate of the body (ψ̇) will also be

constant, and is equal to the spin-to-orbit rate ratio (SR= ψ̇
ν̇
) times ν̇. For notation

convenience, SR is redefined simply as S for the rest of this Appendix. Therefore,

the remainder of the equilibrium conditions are:
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ψ̇ = Sν̇ = const

ψ̈ = 0

ψ = Sν̇t + ψo

(A.11)

where t is time and ψo can be arbitrarily set to zero.

By substituting the conditions shown in A.7 and A.11 into the angular velocity

and acceleration Equations A.2 and A.3, we get

ω1 = ν̇ sin (Sν̇t) sin θ

ω2 = ν̇ cos (Sν̇t) sin θ

ω3 = ν̇ cos θ + Sν̇

(A.12)

and

ω̇1 = Sν̇2 cos (Sν̇t) sin θ

ω̇2 = −Sν̇2 sin (Sν̇t) sin θ

ω̇3 = 0

(A.13)

Substitute these new relationships (Equations A.7-A.13) into the original equations-

of-motion. The third EOM (A.1-c) is trivial (0=0). Therefore, we begin with Equation

A.1-a:
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ASν̇2c (Sν̇t) sθ + (C − A)ν̇c (Sν̇t) sθ (ν̇cθ + Sν̇) =
3µ⊕
R5

R2cθc (Sν̇t) sθ(A− C)

ASν̇2 + (C − A)ν̇ (ν̇cθ + Sν̇) =
3µ⊕
R3

cθ(A− C)

ASν̇2 + (C − A)ν̇2cθ + (C − A)ν̇2S =
3µ⊕
R3

cθ(A− C)

CSν̇2 + (C − A)ν̇2cθ =
3µ⊕
R3

cθ(A− C)

ν̇2cθ(C − A) + CSν̇2 +
3µ⊕
R3

cθ(C − A) = 0

ν̇2cθ(C − A) + CSν̇2 + 3ν̇2cθ(C − A) = 0

ν̇2

(
1 +

CS

cθ(C − A)
+ 3

)
= 0

(A.14)

Solving A.14 means either ν̇=0, which is impossible for any orbit, or

CS

cθ(C − A)
+ 4 = 0

or

S =
−4cθ(C − A)

C

Therefore, the first condition (from Equation A.1-a) that must be satisfied for the

axisymmetric body to achieve the desired equilibrium condition is

S =
ψ̇

ν̇
=

4 cos θ(A− C)

C
(A.15)

Looking at the second equation-of-motion (A.1-b) with all of the new substitu-

tions yields the same result as Equation A.14:
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−ASν̇2s (Sν̇t) sθ − (C − A)ν̇s (Sν̇t) sθ (ν̇cθ + Sν̇) =
3µ⊕
R5

R2cθs (Sν̇t) sθ(C − A)

−ASν̇2 − (C − A)ν̇ (ν̇cθ + Sν̇) =
3µ⊕
R3

cθ(C − A)

−ASν̇2 − (C − A)ν̇2cθ − (C − A)ν̇2S =
3µ⊕
R3

cθ(C − A)

ASν̇2 + (C − A)ν̇2cθ + (C − A)ν̇2S =
3µ⊕
R3

cθ(A− C)

CSν̇2 + (C − A)ν̇2cθ =
3µ⊕
R3

cθ(A− C)

ν̇2cθ(C − A) + CSν̇2 +
3µ⊕
R3

cθ(C − A) = 0

ν̇2cθ(C − A) + CSν̇2 + 3ν̇2cθ(C − A) = 0

ν̇2

(
1 +

CS

cθ(C − A)
+ 3

)
= 0

(A.16)

which has the same condition for equilibrium as previously shown. Therefore, the

single condition that must be satisfied for the axi-symmetric body to achieve the

desired equilibrium condition is Equation A.15:

S =
ψ̇

ν̇
=

4 cos θ(A− C)

C
(A.17)

A.2 Stability Analysis

Linear stability analysis can be performed to determine the infinitesimal stability

of the equilibrium condition shown in Equation A.15. To do this, one can follow the

development of either Likins [30] or Hughes [20]. Likins uses different Euler angles

and slightly different notation than what is used here, while Hughes uses a completely

different notation and model. Following the Likins approach yields a biquadratic

characteristic equation of the form [30]:

λ4 + 2bλ2 + c = 0 (A.18)
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with eigenvalues (roots):

λ2 =
[
−b± (

b2 − c
) 1

2

]

where

b =
7 + 3C

A

[
3
(

C
A
− 1

)
cos2 θ − 2

]

2

and

c = 3

(
1− C

A

)(
4− 3

C

A

)
sin2 θ

Instabilities will occur if the roots have positive real parts, which happens if λ2

is complex or if λ2 is real and positive. There are three situations where this will

occur as shown in Likins [30]. First, when c is negative, λ2 will have a positive real

value. Second, if b2− c is negative then λ2 will be complex. Third, if b is negative, λ2

will be complex or have a real positive value depending on the value of c. Therefore,

any one of these three conditions denotes instability:

i) c < 0

ii) b2 − c < 0

iii) b < 0

(A.19)

That is, (i) or (ii) or (iii) will yield instability. Conversely, we can determine infinites-

imal stability as the intersection of the opposites of all three conditions. In other

words, the conditions where “(i) is not met” and “(ii) is not met” and “(iii) is not

met” simultaneously will give the infinitesimal stability conditions for the equilibrium.

Letting K = C
A

for simplicity and starting with Equation A.19-i, we need

3 (1−K) (4− 3K) sin2 θ < 0 (A.20)
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Since this research focuses on oblate, axisymmetric bodies 1 < K < 2, therefore

(1−K) is strictly negative. Also, as long as θ is not 0 or π, sin2(θ) is always positive.

Therefore, the first condition for instability is:

K <
4

3
(A.21)

For Equation A.19-iii, the following must be satisfied:

7+3K[3(K−1) cos2 θ−2]
2

< 0

7− 6K + 9K (K − 1) cos2 θ < 0

cos2 θ < 6K−7
9K(K−1)

|cos θ| <
√

6K−7
9K(K−1)

or

|θ| > arccos

(√
6K − 7

9K (K − 1)

)
(A.22)

Finally, from Equation A.19-ii,

(7 + 3K [3 (K − 1) cos2 θ − 2])
2

4
− 3 (1−K) (4− 3 (K))

(
1− cos2 θ

)
< 0

which can be re-written as

x cos4 θ + y cos2 θ + z < 0 (A.23)

where
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x = (9K(K−1))2

4

y = (7−6K)9K(K−1)
2

− 3(K − 1)(4− 3K)

z = (7−6K)2

4
+ 3(K − 1)(4− 3K)

(A.24)

Now, by re-writing Equation A.23 as

x
(
cos2 θ − γ

) (
cos2 θ − δ

)
< 0

where

δ =
−y±

√
y2−4xz

2x

γ = z
xδ

and knowing that x is always positive, we know that either

|cos θ| < √
γ and |cos θ| >

√
δ

or

|cos θ| > √
γ and |cos θ| <

√
δ

We can assume, without loss of generality that γ ≤ δ, therefore the condition

from Equation A.19-ii that could create instability is:

|θ| < arccos
(√

γ
)

and |θ| > arccos
(√

δ
)

(A.25)

A plot of all three instability conditions (Equations A.21, A.22, and A.25) is

shown in Figure A.2. For infinitesimal stability, we want the area in the lower right

corner, where none of these conditions are met.
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Figure A.2: Instability Conditions for Oblate Likins-Pringle Equilibria

For this analysis, we evaluate the stability for the specific moment-of-inertia

ratio used exclusively in multi-body system simulations: K = C/A = 2. By default,

we avoid the first instability condition (K < 4/3) regardless of cone angle. The second

condition requires that |θ| be below 46.434◦ or above 85.376◦ to be stable. The third

condition requires that |θ| be less than 58.19◦. Therefore, looking at the intersection

of all these requirements, we get infinitesimal stability when:

|θ| < 46.434◦
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Appendix B. Transverse Moment-of-Inertia Development

This appendix develops the transverse moment-of-inertia (MOI) equation for an

axisymmetric, multi-body system with any number of point-mass bodies in a

ring formation.

Consider the axi-symmetric formation with an arbitrary number of bodies (n)

connected by massless tethers as shown in Figure B.1. The masses (mj) are considered

point masses and evenly distributed around the ring at a distance r from the center

of mass.

m1

m2

m3

s

y

x

AÅ

2

n

p

2

n

p

r

r
r

Figure B.1: Transverse Moment-of-Inertia of an Axisymmetric Formation from an
Arbitrary Viewpoint

The transverse MOI of each body about the center of mass is given by

A⊕
1 = m1 {r cos σ}2

A⊕
2 = m2

{
r cos

(
σ +

(
2π
n

))}2

A⊕
3 = m3

{
r cos

(
σ +

(
2π
n

)
2
)}2

A⊕
4 = m4

{
r cos

(
σ +

(
2π
n

)
3
)}2

...

A⊕
n = mn

{
r cos

(
σ +

(
2π
n

)
(n− 1)

)}2

(B.1)
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The overall transverse MOI for the system is found by summing all of those

individual MOI’s from each body:

A⊕
sys =

n∑
j=1

mjr
2 cos2

(
σ + (j − 1)

(
2π

n

))
(B.2)

If we assume all of the masses are equal (mj=m), then

A⊕
sys = k

n∑
j=1

cos2
(
σ + (j − 1)

(
2π
n

))
; k = mr2 (B.3)

We want this transverse MOI to be constant regardless of the aspect angle. That

is, we want to know that A⊕
sys will not be a function of σ. Therefore, we now must

determine for what values of n will Equation B.3 be constant. To begin, re-package

Equation B.3 as

A⊕
sys = k

n−1∑
j=0

cos2

(
σ + j

(
2π

n

))
(B.4)

and use the trigonometric identity, cos2 α = 1
2
(1 + cos 2α), so that

A⊕
sys = k

n−1∑
j=0

1
2

[
1 + cos

(
2σ + j

(
4π
n

))]

A⊕
sys = k

{
n−1∑
j=0

1
2

+ 1
2

n−1∑
j=0

cos
(
2σ + j

(
4π
n

))
}

A⊕
sys = k

{
n
2

+ 1
2

n−1∑
j=0

cos
(
2σ + j

(
4π
n

))
}

Once again, using a trigonometric exponential relation (cos α = eiα+e−iα

2
), we

get

A⊕
sys = k

{
n

2
+

1

2

n−1∑
j=0

ei(2σ+ 4π
n

j) + e−i(2σ+ 4π
n

j)

2

}
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A⊕
sys = k

{
n

2
+

1

4

n−1∑
j=0

ei2σei 4π
n

j + e−i2σe−i 4π
n

j

}

The exponential terms that are not functions of j may be pulled out of the

summations,

A⊕
sys = k

{
n

2
+

1

4
ei2σ

n−1∑
j=0

ei 4π
n

j +
1

4
e−i2σ

n−1∑
j=0

e−i 4π
n

j

}

Now, if we let x = e
4π
n

i, then

A⊕
sys = k

{
n

2
+

1

4
ei2σ

n−1∑
j=0

xj +
1

4
e−i2σ

n−1∑
j=0

x−j

}

or

A⊕
sys = k

{
n

2
+

1

4
ei2σ

n−1∑
j=0

xj + C.C.

}
(B.5)

where “C.C.” denotes the complex conjugate of the term preceding it, for convenience.

Since n represents the number of satellites in the formation, it must be a positive

integer greater than one. If n=2, x = e
4π
n

i=1 and the summation from Equation B.5

becomes

1∑
j=0

xj = x0 + x1

= 1 + x

= 1 + e2πi

= 2

(B.6)

which reduces B.5 to
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A⊕
sys = k

{
1 +

1

4
ei2σ (2) + C.C.

}

= k

{
1 +

1

2
ei2σ +

1

2
e−i2σ

}

= k {1 + cos 2σ}
= 2k cos2 σ

(B.7)

Therefore, for two bodies (n=2), the transverse MOI is

A⊕
sys = 2mr2 cos2 σ (B.8)

which is a function of σ. That is, it changes with your inertial reference and therefore

is not constant.

For n > 2, we go back to Equation B.5. It can be shown, by induction, that the

following relationship is true:

n∑

k=0

xk =
xn+1 − 1

x− 1

Therefore,

n−1∑
j=0

xj =
x(n−1)+1 − 1

x− 1
=

xn − 1

x− 1
(B.9)

If we apply Equation B.9 to Equation B.5

A⊕
sys = k

{
n

2
+

1

4
ei2σ

(
xn − 1

x− 1

)
+ C.C.

}

or

A⊕
sys = k

{
n

2
+

1

4
ei2σ

(
e4πi − 1

e
4π
n

i − 1

)
+ C.C.

}
(B.10)
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Now consider the term inside the inner parenthesis:

(
e4πi − 1

e
4π
n

i − 1

)
(B.11)

This term always has a zero in the numerator since e4πi=1 always. Therefore Equation

B.10 simplifies to just

A⊕
sys = k

{n

2
+ 0

}
=

mr2n

2
(B.12)

which is constant for all σ, therefore the transverse MOI is independent of the reference

chosen for n > 2.
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Appendix C. Calculations for Period Matching

Chapter V discusses how a free-flying formation that begins in Likins-Pringle-

based initial conditions experiences slight in-track drifting between bodies that

start at different altitudes in the formation (Section 5.3.1). One can choose to elimi-

nate this slight in-track drift between two orbits by using a technique called “period

matching”, where the initial velocity of one body is slightly modified such that its

orbital period exactly matches the period of the other body. This appendix specifies

the period matching technique that was used in this research (where indicated).

To begin, let’s say there are two bodies with initial position and velocity vectors:

~R1, ~V1, ~R2, ~V2. Furthermore, let’s say we want to adjust the orbital period of body 2

to match the period of body 1. What we really want to do is “zero out” the difference

in the orbital periods:

∆P = P2 − P1 = 0 (C.1)

The formula for the period of a particular orbit is [3]

Pi =
2π

ν̇

= 2π

√
a3

i

µ⊕

= 2π

√(
µ⊕
−2E

)3

µ⊕

= 2πµ⊕ (−2E)−
3
2

= 2πµ⊕


−2





∣∣∣~Vi

∣∣∣
2

2
− µ⊕∣∣∣~Ri

∣∣∣








− 3
2

(C.2)

where ν̇ is the mean motion, µ⊕ = GM⊕ is the gravitational constant for the Earth,

ai is the semi-major axis of the orbit, and E is the total energy per unit mass. For

convenience, we define
∣∣∣~Ri

∣∣∣=Ri and
∣∣∣~Vi

∣∣∣=Vi. Going back to Equation C.1, we want
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∆P = 2πµ⊕

(
−2

{
V 2

2

2
− µ⊕

R2

})− 3
2

− 2πµ⊕

(
−2

{
V 2

1

2
− µ⊕

R1

})− 3
2

= 0

2πµ⊕ (−2)−
3
2

[{
V 2

2

2
− µ⊕

R2

}− 3
2

−
{

V 2
1

2
− µ⊕

R1

}− 3
2

]
= 0

{
V 2

2

2
− µ⊕

R2

}− 3
2

−
{

V 2
1

2
− µ⊕

R1

}− 3
2

= 0 (C.3)

Next solve C.3 for V2.

V 2
2

2
− µ⊕

R2

=

({
V 2

1

2
− µ⊕

R1

}− 3
2

)− 2
3

V 2
2

2
− µ⊕

R2

=

{
V 2

1

2
− µ⊕

R1

}

V 2
2

2
=

V 2
1

2
− µ⊕

R1

+
µ⊕
R2

V2new =

√
V 2

1 −
2µ⊕
R1

+
2µ⊕
R2

(C.4)

To modify the original initial velocity of body 2, we use the new magnitude,

V2new , but in the original direction:

~V2new = V2new

~V2old

V2old

(C.5)

This new velocity for body 2 will yield an orbital period that matches the

period of body 1. This technique can also be applied between one of the bodies and

the system center-of-mass’ velocity.
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Appendix D. Period Difference Between Free-Flying Bodies in

Likins-Pringle Equilibria

To confirm that Likins-Pringle-based initial conditions produce relative equilibria

for free-flying systems, it is useful to compare the difference in the orbit periods

and show that they are nearly the same. This appendix is an analytic demonstration

of how close the orbital periods are for two such bodies. Specifically, for reasons

explained in Section 5.3.1, we choose to compare bodies 1 and 2 of the 3-body system

in the L-P free-flight scenario.

To perform this comparison analytically, we use many of the relations in Section

5.2.2 to determine the initial positions and velocities of the two bodies. The positions

are taken from Equation 5.35. For body 1, we get

î ~R1 = î ~R⊕ + Cibb̂~r1 =




X⊕

Y⊕

Z⊕


 + R3 (−ν − α) R2 (β)




√
3

3
ρ

0

0




î ~R1 =




X⊕ +
√

3
3

ρ cos β cos(−ν − α)

Y⊕ −
√

3
3

ρ cos β sin(−ν − α)

Z⊕ +
√

3
3

ρ sin β


 (D.1)

Likewise, for body 2

î ~R2 = î ~R⊕ + Cibb̂~r2 =




X⊕ + ρ
2
sin(−ν − α)−

√
3

6
ρ cos β cos(−ν − α)

Y⊕ + ρ
2
cos(−ν − α) +

√
3

6
ρ cos β sin(−ν − α)

Z⊕ −
√

3
6

ρ sin β


 (D.2)

Recall that from the initial set-up (Equation 5.40) many of these terms drop

out: α = 0, ν = 0, Y⊕ = 0, and Z⊕ = 0. Therefore the initial position vectors become
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î ~R1 =




X⊕ +
√

3
3

ρ cos β

0
√

3
3

ρ sin β


 (D.3)

î ~R2 =




X⊕ −
√

3
6

ρ cos β

ρ
2

−
√

3
6

ρ sin β


 (D.4)

To get the initial velocities, we need the angular momentum from Equation 5.41:

b̂~ωbi =




0

0

ψ̇


 + Cbe




0

0

ν̇


 =




0

0

ψ̇


 + R2 (−β) R3 (α)




0

0

ν̇




and since α = 0

b̂~ωbi =




ν̇ sin β

0

ν̇ cos β + ψ̇


 (D.5)

From Appendix A, we know that for the Likins-Pringle set-up:

ψ̇ =
ν̇4 cos β(A− C)

C
(D.6)

so the angular momentum can be re-written as

b̂~ωbi =




ν̇ sin β

0

ν̇ cos β (4A−3C)
C


 (D.7)
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With the angular momentum in hand, we calculate the initial velocities using

Equations 5.36 and 5.37:

î~Vi = î~V⊕ + î~vi

î~vi = î d

dt
b̂~ri = b̂ d

dt
b̂~ri + b̂~ωbi × b̂~ri

where b̂ d
dt

b̂~ri is zero and

b̂~ωbi × b̂~r1 =




0
√

3
3

ρν̇ cos β (4A−3C)
C

0




b̂~ωbi × b̂~r2 =




−ρ
2
ν̇ cos β (4A−3C)

C

−
√

3
6

ρν̇ cos β (4A−3C)
C

ρ
2
ν̇ sin β




What is left for the î~vi terms is still expressed in the body frame coordinates,

therefore they must be rotated back into the inertial frame using Cib = R2 (β) (for

convenience let s∗=sin∗, c∗=cos∗):

î~v1 =




cβ 0 −sβ

0 1 0

sβ 0 cβ







0
√

3
3

ρν̇cβ (4A−3C)
C

0


 =




0
√

3
3

ρν̇cβ (4A−3C)
C

0




î~v2 =




cβ 0 −sβ

0 1 0

sβ 0 cβ







−ρ
2
ν̇cβ (4A−3C)

C

−
√

3
6

ρν̇cβ (4A−3C)
C

ρ
2
ν̇sβ


 =




−ρ
2
ν̇c2β (4A−3C)

C
− ρ

2
ν̇s2β

−
√

3
6

ρν̇cβ (4A−3C)
C

−ρ
2
ν̇sβcβ (4A−3C)

C
+ ρ

2
ν̇cβsβ



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The initial velocities take the form

î~V1 =




Ẋ⊕

Ẏ⊕ +
√

3
3

ρν̇ cos β (4A−3C)
C

Ż⊕




î~V2 =




Ẋ⊕ − ρ
2
ν̇c2β (4A−3C)

C
− ρ

2
ν̇s2β

Ẏ⊕ −
√

3
6

ρν̇cβ (4A−3C)
C

Ż⊕ − ρ
2
ν̇sβcβ (4A−3C)

C
+ ρ

2
ν̇cβsβ




but once again, given the initial set-up of a circular orbit at some altitude X⊕, the

inertial velocities in all but the Y direction are zero (Ẋ⊕ = 0, Ż⊕ = 0), while Ẏ⊕

becomes
√

µ⊕
X⊕

. Furthermore, we know from Equations 5.43 and 5.44 that the ratio

of C:A is 2:1, so (4A−3C)
C

= −1. Finally, we can redefine ν̇ from Equation 5.39 as

X⊕Ẏ⊕
X2
⊕

= 1
X⊕

√
µ⊕
X⊕

. Therefore, the initial velocities of these two bodies become:

î~V1 =




0√
µ⊕
X⊕

−
√

3ρ
3X⊕

√
µ⊕
X⊕

cos β

0


 (D.8)

î~V2 =




ρ
2X⊕

√
µ⊕
X⊕

(2c2β − 1)
√

µ⊕
X⊕

+
√

3ρ
6X⊕

√
µ⊕
X⊕

cβ

ρ
X⊕

√
µ⊕
X⊕

sβcβ




(D.9)

With the initial positions and velocities in hand, we now look at the difference

in the two bodies’ orbital periods. Using the expression for period from Appendix C,

we show that P2 = P1 by

2πµ⊕

(
−2

{
V 2

1

2
− µ⊕

R1

})− 3
2

= 2πµ⊕

(
−2

{
V 2

2

2
− µ⊕

R2

})− 3
2

(D.10)

which is equivalent to equating the total energies (Ei):
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E1 = E2

V 2
1

2
− µ⊕

R1

=
V 2

2

2
− µ⊕

R2

(D.11)

where Ri and Vi are the magnitudes of the position (Equations D.3-D.4) and veloc-

ity (Equations D.8-D.9) vectors. After making these substitutions, the left side of

Equation D.11 (body 1’s total energy) becomes

E1 =
µ⊕

2X⊕
−
√

3µ⊕ρcβ

3X2⊕
+

µ⊕ρ2c2β

6X3⊕
− µ⊕√

X2⊕ + 2
√

3ρcβX⊕
3

+ ρ2

3

(D.12)

while the right side of Equation D.11 (body 2’s total energy) becomes

E2 =
µ⊕

2X⊕
+

√
3µ⊕ρcβ

6X2⊕
+

µ⊕ρ2(2c2β − 1)2

8X3⊕
+

µ⊕ρ2c2β

24X3⊕

+
µ⊕ρ2c2βs2β

2X3⊕
− µ⊕√

X2⊕ −
√

3ρcβX⊕
3

+ ρ2

3

(D.13)

The next step is to evaluate the difference in these two equations.

∆E = E1 − E2

This is done by comparing “like” terms. For terms on the order of 1
X⊕

, there is no

difference between D.12 and D.13:

∆E(
1

X⊕

) =
µ⊕

2X⊕
− µ⊕

2X⊕
= 0 (D.14)

For terms on the order of ρ
X2
⊕
, the difference is:
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∆E(
ρ

X2⊕

) = −
√

3µ⊕ρcβ

3X2⊕
−
√

3µ⊕ρcβ

6X2⊕
=
−√3µ⊕ρcβ

2X2⊕
(D.15)

For terms on the order of ρ2

X3
⊕
, the difference is:

∆E(
ρ2

X3⊕

) =
µ⊕ρ2c2β

6X3⊕
− µ⊕ρ2(2c2β − 1)2

8X3⊕
− µ⊕ρ2c2β

24X3⊕
− µ⊕ρ2c2βs2β

2X3⊕

=
µ⊕ρ2c2β

6X3⊕
− µ⊕ρ2c2β

X3⊕

(
1

2
c2β − 1

2
+

1

24
+

1

2
s2β

)
− µ⊕ρ2

8X3⊕

=
µ⊕ρ2c2β

6X3⊕
− 1

24

µ⊕ρ2c2β

X3⊕
− µ⊕ρ2

8X3⊕

=
1

8

µ⊕ρ2c2β

X3⊕
− µ⊕ρ2

8X3⊕

(D.16)

Evaluating the difference between the last two terms of D.12 and D.13 is a little

less straightforward:

∆E(
1√•

) = − µ⊕√
X2⊕ + 2

√
3ρcβX⊕

3
+ ρ2

3

+
µ⊕√

X2⊕ −
√

3ρcβX⊕
3

+ ρ2

3

= −µ⊕

(
X2
⊕ +

2
√

3ρcβX⊕
3

+
ρ2

3

) 1
2

+ µ⊕

(
X2
⊕ +

2
√

3ρcβX⊕
3

+
ρ2

3
−
√

3ρcβX⊕

) 1
2

(D.17)

For this, we need to expand these terms in powers of ρ
X⊕

up to order 3. In doing so,

we re-write the first term of D.17 as

E1(
1√•

) = −µ⊕

(
1

X⊕
−
√

3ρcβ

3X⊕
+

ρ2

2X2⊕

( −1

3X⊕
+

c2β

X⊕

)
+ O

(
ρ

X⊕

)3
)

(D.18)

and the second term of D.17 as
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E2(
1√•

) = −µ⊕

(
1

X⊕
−
√

3ρcβ

6X⊕
+

ρ2

2X2⊕

( −1

3X⊕
+

c2β

4X⊕

)
+ O

(
ρ

X⊕

)3
)

(D.19)

Note that ρ << X⊕, so the additional term that is on the order of
(

ρ
X⊕

)3

is a

very small number. Therefore the difference between D.12 and D.13 for the 1√• terms

is:

∆E(
1√•

) = E1(
1√•

) − E2(
1√•

) =

√
3µ⊕ρcβ

2X2⊕
− 3µ⊕ρ2c2β

8X3⊕
+O

(
ρ

X⊕

)3

(D.20)

Combining all of the ∆E’s from all of the term-by-term comparisons, we get

the total difference in energy ∆Etot between the two bodies:

∆Etot = ∆E(
1

X⊕

) + ∆E(
ρ

X2⊕

) + ∆E(
ρ2

X3⊕

) + ∆E(
1√•

)+O

(
ρ

X⊕

)3

∆Etot = −
√

3µ⊕ρcβ

2X2⊕
+

3µ⊕ρ2c2β

24X3⊕
− µ⊕ρ2

8X3⊕
+

√
3µ⊕ρcβ

2X2⊕
− 3µ⊕ρ2c2β

8X3⊕
+O

(
ρ

X⊕

)3

∆Etot =
−µ⊕ρ2c2β

4X3⊕
− µ⊕ρ2

8X3⊕
+O

(
ρ

X⊕

)3

∆Etot =
−µ⊕ρ2

4X3⊕

(
cos2β +

1

2

)
+ O

(
ρ

X⊕

)3

(D.21)

Notice that this difference in energy is going to be fairly small – on the order

of 10−5 – for a low earth orbit (X⊕ = 1.1DU) and apertures as large as ρo = 10km,

regardless of the cone angle (β). In fact, as the altitude increases or the aperture

decreases, the difference in energy gets even smaller. For our sample orbit of 1.1DU ,
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the total energy of one of the orbits is on the order of 10+2. This translates into a

difference in orbital periods of milliseconds:

∆P ∼= 2πµ⊕

(
(−2E)

−3/2 − (−2 (E + ∆E))
−3/2

)
≈ 10−3secs
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Appendix E. Back-of-Envelope Calculations for Kumar Range

This appendix serves as a “back-of-the-envelope” calculation of the range of spin-

to-orbit rate ratios (Kumar Range) required for a tethered system to maintain

tether tension while in a 0◦ cone angle configuration.

Recall from Section 5.3.4 the initial configuration as originally shown in Figure

5.29 and shown again here in more detail in Figure E.1

m1

m2 m3

cF
r
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r
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r

rF
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Figure E.1: Centrifugal vs Gravity Gradient Restoring Forces

As discussed in Chapter V, the blue tether is the first to go slack with insufficient

spin rate, since it is the most horizontal. We are trying to determine the conditions

under which the blue tether will not go slack. To combat this slacking at this moment

in time, we need the horizontal component of the centrifugal force (Fch
) to be greater

than the horizontal component of the gravity gradient restoring force (Frh
).

Fch
> Frh
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Fc sin(60◦) > Fr sin(60◦)

Note that since the angle of Fc and Fr are equal and opposite from the vertical,

we can simply say that

Fc > Fr (E.1)

The restoring force is calculated using an approximation for the gravity gradient

force as presented by Cosmo and Lorenzini [12]

Fr = Fgg sin(30◦) = 3Lmν̇2 sin(30◦)

where ν̇ is the orbital angular velocity, m is the mass of one of the bodies, and

L = ρ
2

is the distance to the tether’s CoM which should be the “pivot point” of the

gravity gradient restoring motion. It is important to recognize, however, that the

two “vertical” tethers (red/green) are anchored together at the top, which creates the

pivot point for the gravity gradient restoration and causes the restoring effect to be

doubled at the bottom ends of those tethers. This can be interpreted as doubling the

restoring force or a doubling of L such that L = ρ:

Fr = 3ρmν̇2 sin(30◦)

Now, getting the centrifugal force is straightforward:

Fc = mr
(
ψ̇ + ν̇

)2

= m
ρ√
3

(
ψ̇ + ν̇

)2

where the total “spin” that causes centrifugal force is felt from both the spinning (ψ̇)

and the orbit rate (ν̇). Therefore, the condition that must be met for the blue tether

to remain taut is found by substituting back into Equation E.1:
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m
ρ√
3

(
ψ̇ + ν̇

)2

> 3ρmν̇2 sin(30◦) (E.2)

Now solve Equation E.2 for the spin-to-orbit rate ratio ( ψ̇
ν̇
):

(
ψ̇ + ν̇

)2

ν̇2
>

3
√

3

2
= 2.598

∣∣∣∣∣
ψ̇ + ν̇

ν̇

∣∣∣∣∣ > 1.61

∣∣∣∣∣
ψ̇

ν̇
+ 1

∣∣∣∣∣ > 1.61

So, from this simple calculation, we estimate that the spin-to-orbit rate ratio

must be:

ψ̇
ν̇

< −2.61 or 0.61 >
ψ̇

ν̇
(E.3)

which compares quite nicely with the detailed Kumar Range values of −2.58 and

0.58 [26]. Given that the equation for Fgg is an approximation for tethers that are

close to nadir, this is a decent “back-of-the-envelope” estimation of the Kumar Range

considering the relatively simple approach.
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Appendix F. MATLAB Code

This appendix holds the main Matlab R© codes that were used in this research.

There are two sections of this appendix, each dedicated to a different kind of

simulation: the first section contains the semi-rigid body codes, which are simply

extension of the rigid body codes. A script file and an EOM file, which houses the

equations-of-motion for the main model, are the two files provided in the first section.

The second section holds the multi-body system codes. The code “Tether3B” is the

main code used for most of the multi-body simulations in this research. It is fairly

self-contained and includes its own equations-of-motion.

F.1 Semi-Rigid Body Codes

Listing F.1: This is the script file for the semi-rigid body simulation.
(appendixf/code/RBand3fullrotorscript.m)

%******************************************************
% SEMI -RIGID BODY MODEL (3 rotors -- full development)
% Maj Kurt Vogel
% May 2005

5 %
% This script file sets constants and ICs for ODE45 to integrate
% the EOM for a rigid body using Eulers Equation for angular
% acceleration and Euler Angles for orientation.
%

10 % In addition , 3 rotors have been added as energy sinks . They are
% free to spin about the body axes , but with damping . New states
% are added for the relative spin rates of the rotors.
%
% The state is

15 % {phi , theta , psi , w1 , w2 , w3 , sigma1 , sigma2 , sigma3}’
% (w in the body frame)
% (sigma ’s are the spin velocities of the 3
% rotors relative to the body frame)
%******************************************************

20
clf
clear all
close all

25 global I I_Inv mu A C nu0 nudot R GG_on mu_d D J

%******************************************************
% Define constants and initial conditions
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30 % Orbit
R=9378145; % orbital radius (m)
mu =398600.4418 E9; % grav const (m^3/s^2)
nu0 =0; % Initial orbital angular position (rad)
nudot=sqrt(mu)/(R^(3/2)); % mean motion (rads/sec)

35
stepsize =10;
tmax =90000; % total end run time
parts =1; % break up total run into # integration runs
n=tmax/parts ; % time part size

40 sampsize =1; % take every # samples to reduce data memory
tvec =[0: stepsize :2*pi/nudot *1];
% General Oblate SRB -- no L-P
% stepsize =.1; tmax =200; parts =1; n=tmax/parts ; sampsize =1;
% General Prolate SRB -- no L-P

45 % stepsize =1; tmax =1000; parts =1; n=tmax/parts ; sampsize =1;

% Moments of Inertia
A=10; % kg*m^2
C=50; % kg*m^2

50 D=1;
J=.0001;
I=[A 0 0;0 A 0;0 0 C];
I_Inv=inv(I);
if A>C

55 body=’Prolate ’
elseif A==C

body=’Equal MOI Axes’
else

body=’Oblate ’
60 end

% Initial Euler Angles and rates
% phi0=nu0 +0;
% theta0 =45*pi /180;

65 % psi0 =0;
% phidot0 =.2;
% thetadot0 =0;
% psidot0 =.5;
% %% For Likins -Pringle

70 phi0=nu0 +0;
theta0 =45*pi /180;
psi0 =0;
phidot0=nudot;
thetadot0 =0;

75 psidot0=(-nudot*cos(theta0)*4*(C-A)/C);

%******************************************************
% Other Settings

80 % Gravity Gradient Torques
GG_on =1; % 1=on 0= off
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GG=’Gravity Off’;
if GG_on == 1

GG=’Gravity On’;
85 end

% Energy Sink Stuff
mu_d =.5; % N-m-s or kg -m^2/s
sigma1_0=psidot0 *0;

90 sigma2_0=psidot0 *0;
sigma3_0=psidot0 *0;

%******************************************************
% Initialize State

95 K0=[sin(psi0)*sin(theta0) cos(psi0) 0;
cos(psi0)*sin(theta0) -sin(psi0) 0;
cos(theta0) 0 1];

w0=K0*[phidot0 ,thetadot0 ,psidot0]’;
x0=[phi0 ,theta0 ,psi0 ,w0(1),w0(2),w0(3) ,...

100 sigma1_0 ,sigma2_0 ,sigma3_0]’;

%******************************************************
% Run integrator

105 options = odeset(’MaxStep ’,stepsize);

for i=1: parts % running integrator one part at a time
tvec =[(i-1)*n:stepsize:i*n];
[tp,Xp]=ode45(@rb_3fullrot_eom ,tvec ,x0 ,options);

110 x0=[Xp(length(tp) ,1),Xp(length(tp) ,2),Xp(length(tp) ,3) ,...
Xp(length(tp) ,4),Xp(length(tp) ,5),Xp(length(tp) ,6) ,...
Xp(length(tp) ,7),Xp(length(tp) ,8),Xp(length(tp) ,9)]’;

%% uncomment this if you want to look at all parts ...
115 % downsampled state vector for this part only

Xtemp=downsample(Xp,sampsize);
% downsampled time vector for this part only
td=downsample(tp,sampsize);
if i==1

120 X=Xtemp;
t=td;

else
X=[X;Xtemp (2:( length(Xtemp (:,1))) ,:)];
t=[t;td(2:( length(td)) ,:)];

125 end

%% uncomment these lines if just want to look at last 3 parts
% if i>=(parts -3)
% if i==(parts -3)

130 % X=Xp;
% t=tp;
% else
% X=[X;Xp];
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% t=[t;tp];
135 % end

% end
%%
end

140 %******************************************************
% Calc H (ang momentum)

w=(X(: ,4:6));
H_b=(I*w’) ’; % Can only

145 H_r=[D*X(:,7),D*X(:,8),D*X(:,9) ]+((D+2*J)*w); % Rotors only
H=H_b+H_r; % Whole system

%******************************************************
% Express w & H in inertial frame

150 % ( rotate from b-frame to i-frame)

for i=1: length(t)
R3psi =[cos(X(i,3)) sin(X(i,3)) 0;

-sin(X(i,3)) cos(X(i,3)) 0;
155 0 0 1];

R1theta =[1 0 0;
0 cos(X(i,2)) sin(X(i,2));
0 -sin(X(i,2)) cos(X(i,2))];

R3phi =[cos(X(i,1)) sin(X(i,1)) 0;
160 -sin(X(i,1)) cos(X(i,1)) 0;

0 0 1];
C_ib=[R3psi*R1theta*R3phi]’;
w_i(i,1:3) =(C_ib*w(i,1:3) ’) ’;
H_i(i,1:3) =(C_ib*H(i,1:3) ’) ’;

165 b3_i(i,1:3) =(C_ib *[0,0,1]’) ’;
end

%******************************************************
% Calculate total system kinetic energy over time

170
for i=1: length(t)

KE(i)=0.5*((w(i,1:3)*I*w(i,1:3) ’)+ ...;
(2*J*(w(i,1) ^2+w(i,2) ^2+w(i,3) ^2))+...;
(D*((w(i,1)+X(i,7))^2+(w(i,2)+X(i,8))^2+...

175 (w(i,3)+X(i,9))^2)));
end

%******************************************************
% Express b3 in orbit frame

180 % [0 0 1] in b=[-sin(theta)*sin(nu -phi) -sin(theta)*cos(nu -phi)
% cos(theta)] in e

for i=1: length(t)
nu(i)=(nudot*t(i))+nu0;

185 b3_e(i,1:3)=[-sin(X(i,2))*sin(nu(i)-X(i,1))...
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-sin(X(i,2))*cos(nu(i)-X(i,1))...
cos(X(i,2))];

end

190 nod=(asin(max(b3_e (:,3)))-asin(min(b3_e (:,3))))*180/ pi;
shake =(asin(max(b3_e (:,1)))+abs(asin(min(b3_e (:,1)))))*180/ pi;

Listing F.2: This next routine holds the equations of motion for the ODE45 inte-
grator on the semi-rigid body simulation.
(appendixf/code/rb3fullroteom.m)

function xdot=rb_3fullrot_eom(t,x)
global I I_Inv mu A C nu0 nudot R GG_on mu_d D J

%******************************************************
5 % Maj Kurt Vogel

% May 2005
% This function propagates the EOM for a rigid body using
% Eulers Equation for angular acceleration and Euler Angles for
% orientation . In addition , a 3 orthonormal rotors have been

10 % added as an energy sink.
% The state is
% {phi , theta , psi , w1 , w2 , w3 , sigma1 , sigma2 , sigma3}’
% (w in the body frame)
% (sigma ’s are the spin velocities of the 3

15 % rotors relative to the body frame)
%******************************************************

%******************************************************
% Compute applied torgues due to gravity gradient

20
% No torque for now ...
M1=0;
M2=0;
M3=0;

25
if GG_on == 1

% ( using position of RB seen from inertial earth i-frame ...
expressed in b-frame)

nu=(nudot*t)+nu0;
Xb=-R*(( sin(nu)*cos(x(3))*cos(x(1)))-(sin(nu)*cos(x(2))*...

30 sin(x(3))*sin(x(1))) -(cos(nu)*cos(x(3))*sin(x(1))) -...
(cos(nu)*cos(x(2))*sin(x(3))*cos(x(1))));

Yb=R*(( sin(nu)*sin(x(3))*cos(x(1)))+(sin(nu)*cos(x(2))*...
cos(x(3))*sin(x(1))) -(cos(nu)*sin(x(3))*sin(x(1)))+...
(cos(nu)*cos(x(2))*cos(x(3))*cos(x(1))));

35 Zb=-R*(( sin(nu)*sin(x(2))*sin(x(1)))+(cos(nu)*sin(x(2))*...
cos(x(1))));

M1=3*mu*Yb*Zb*(C-A)/(R^5);
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M2=3*mu*Xb*Zb*(A-C)/(R^5);
M3=0;

40 end

M=[M1 M2 M3]’;

%******************************************************
45 % Equations of Motion for Euler Angles ( Orientation)

K_Inv =[sin(x(3))/sin(x(2)) cos(x(3))/sin(x(2)) 0;
cos(x(3)) -sin(x(3)) 0;
-sin(x(3))*cos(x(2))/sin(x(2))...

50 -cos(x(3))*cos(x(2))/sin(x(2)) 1];
Edot=K_Inv *[x(4) x(5) x(6)]’;

%******************************************************
% Equations of Motion for Euler Equation ( Angular Acceleration)

55
w1dot =(M1/(A+(2*J)))+(((A-C)*x(5)*x(6))+(D*x(6)*x(8)) -...

(D*x(5)*x(9))+(mu_d*x(7)))/(A+(2*J));
w2dot =(M2/(A+(2*J)))+(((C-A)*x(4)*x(6)) -(D*x(6)*x(7))+...

(D*x(4)*x(9))+(mu_d*x(8)))/(A+(2*J));
60 w3dot =(M3/(C+(2*J)))+((D*x(5)*x(7)) -(D*x(4)*x(8))+...

(mu_d*x(9)))/(C+(2*J));
sig1dot=-(w1dot) -(mu_d*x(7)/D);
sig2dot=-(w2dot) -(mu_d*x(8)/D);
sig3dot=-(w3dot) -(mu_d*x(9)/D);

65
%******************************************************
% Total EOM

xdot=[Edot;w1dot;w2dot;w3dot;sig1dot;sig2dot;sig3dot ];
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F.2 Multi-Body System Codes

Listing F.3: This is the main model for a three-body system coupled by elastic,
linear tethers.
(appendixf/code/Tether3B.m)

%******************************************************
% Three -body System Model with Elastic , Linear Tethers
% LtCol Kurt Vogel
% Nov 2005 - Mar 2006

5 %
% The routine simulates three bodies connected by
% tethers in earth orbit . There are options in the EOM to change
% the linear tethers into springs , thrusters , non -linear tethers ,
% and variable -length tethers . J2 Perturbations can be

10 % selectively turned on/off. In addition , this model is easily
% modified to create more bodies and tethers.
%
% The state is {Rx1 ,Ry1 ,Rz1 ,Vx1 ,Vy1 ,Vz1 ,Rx2 ,Ry2 ,Rz2 ,
% Vx2 ,Vy2 ,Vz2 ,Rx3 ,Ry3 ,Rz3 ,Vx3 ,Vy3 ,Vz3}’

15 %******************************************************

% NOTE: To create the 4B HAS , 6B Ring , and 7B CHAS Models , this
% code was used as a basis . Additional masses , states , tether
% vector lines , etc were added as required and saved as other

20 % files.

function dummy_output=Tether_3B ; % This is the ’script ’ function

disp([’Start of program run ’, datestr(now)]);
25 clf; clear all; close all;

format long;

%******************************************************
% Define constants and settings

30
global m1 m2 m3 mu_damp Re J2 K_spring rho_o mu_earth beta_ic...

...
pick_f thresh num_firings programmed_rhos;

m1 = 200; % kg
m2 = 200; % kg

35 m3 = 200; % kg
mu_damp = .05; % kg/s
K_spring = 20; % kg/s^2
rho_o = 10.0; % km ( unstretched tether length)
mu_earth = 398600.4415 e0; % km ^3 / sec^2

40 Re = 6378.13655; % km
J2 = 0.1082626925638815e-2; %
tf=400 ; % sec
stepsize = .1; % sec
samplesize = 1; % number of steps between samples

45 num_iterations=floor(tf/( samplesize*stepsize))+1;
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pick_f = ’e’; % reference frame for plots
% e=orbit
% s=stroboscopic
% i=inertial

50 num_firings =0; % if using thrusters
thresh =.0001; % threshold for thruster firing

% to create spring compression

%******************************************************
55 % Set initial conditions in Generalized Coords ( assumes

% perfect equilateral triangle for initial conditions)

rho_ic = 10.5; % km
alpha_ic = 75 * pi /180.; % deg -> rad

60 beta_ic = 0 * pi /180; % deg -> rad
rho_dot_ic = 0; % km/sec
alpha_dot_ic = 5 * pi/180 % deg/sec -> rad/sec
beta_dot_ic = 0 * pi /180; % deg/sec -> rad/sec
R_c_ic = [1.1 0 0]* Re; % DU -> km

65 V_c_ic = [0 sqrt(mu_earth/norm(R_c_ic)) 0]; % km/s

% Diagnostic for looking at Thompson -like scenarios
% H=cross(R_c_ic ,V_c_ic);
% nu_dot=norm(H)/(( norm(R_c_ic))^2)

70 % spin_ratio=alpha_dot_ic/nu_dot

% Convert from Generalized Coords to Newtonian State
State=Gen_Coord_2_State(rho_ic , alpha_ic , beta_ic ,...

rho_dot_ic , alpha_dot_ic , beta_dot_ic , R_c_ic , V_c_ic);
75

%******************************************************
% Uncomment these next lines for L-P Initial Conditions
% ( overrides the I.C.’s from above)

80 tf =10000; % sec
stepsize = 1; % sec
samplesize = 1; % number of steps between samples
num_iterations=floor(tf/( samplesize*stepsize))+1;

85 % Read in L-P ICs that were generated with GET3BLPICs.m
load 3 B_LP_ICs.mat Initial_State rho_ic alpha_ic beta_ic ...

R_c_ic V_c_ic spin_ratio
State=Initial_State;

90 %******************************************************
% Read in pre -programmed tether lengths
% ( basically loading a baseline run from an E.C.)
%
% load 3 B_data_case27_1sec_sample.mat All_VOI

95 % programmed_rhos=All_VOI (: ,19:21);

%******************************************************
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% Run integrator

100 t=0;
count =1;
sample =0;
All_States=zeros(num_iterations ,19);
All_VOI=zeros(num_iterations ,25);

105 All_States(count ,:)=[State , t];
[R_c , V_c , r1_f , r2_f , r3_f , h_f , rho_12 , rho_23 , rho_31 ,...

rho_12_dot , rho_23_dot , rho_31_dot ]= State_2_VOI(State);
All_VOI(count ,:)=[R_c , V_c , r1_f , r2_f , r3_f , h_f , rho_12 ,...

rho_23 , rho_31 , rho_12_dot , rho_23_dot , rho_31_dot , t];
110

while t<tf
NewState=RK4(State ,stepsize ,t);
t=t+stepsize;
sample=sample +1;

115
if sample == samplesize % Only look at sampled data

count=count +1;
sample =0;
All_States(count ,:)=[NewState , t];

120
% Convert from State to Variables of Interest (VOI)
[R_c , V_c , r1_f , r2_f , r3_f , h_f , rho_12 , rho_23 , rho_31 ...

,...
rho_12_dot , rho_23_dot , rho_31_dot ]= State_2_VOI(NewState)...

;
All_VOI(count ,:)=[R_c , V_c , r1_f , r2_f , r3_f , h_f , rho_12 ...

,...
125 rho_23 , rho_31 , rho_12_dot , rho_23_dot , rho_31_dot , t];

end

State=NewState;
end % iteration loop

130
num_firings
total_delta_V =( num_firings*K_spring*thresh/m1)*1000* stepsize

%******************************************************
135 % Save data for use outside of program (re -runs later)

save 3 B_data.mat All_VOI m1 m2 m3 mu_damp K_spring rho_o tf...
stepsize rho_ic alpha_ic beta_ic rho_dot_ic alpha_dot_ic ...
beta_dot_ic R_c_ic V_c_ic All_States samplesize pick_f

140
%******************************************************
% Plots -- Not included here for brevity

disp([’End of program run ’, datestr(now)]);
145 return ; % End of Script File

252



www.manaraa.com

%##########################################################
% Sub -Functions
%##########################################################

150
% Converts Generalized Initial Coords to Newtonian State
function State=Gen_Coord_2_State(rho , alpha , beta , rho_dot ,...

alpha_dot , beta_dot , R_c , V_c);
global m1 m2 m3 mu_damp Re J2 K_spring rho_o mu_earth ...

155 beta_ic pick_f thresh num_firings programmed_rhos;
nu=atan2(R_c(2),R_c(1));
C2=Rot_2(beta);
C3=Rot_3(-(nu+alpha));
C_ib=C3*C2;

160 C_bi=inv(C_ib);
C2=Rot_2(-beta);
C3=Rot_3(alpha);
C_be=C2*C3;
r1_b =[(rho*sqrt (3)/3) 0 0] ’;

165 r2_b=[-(rho*sqrt (3) /6) (rho /2) 0]’;
r3_b=[-(rho*sqrt (3) /6) -(rho /2) 0]’;
r1_i=C_ib*r1_b;
r2_i=C_ib*r2_b;
r3_i=C_ib*r3_b;

170 R1_i=R_c ’+r1_i;
R2_i=R_c ’+r2_i;
R3_i=R_c ’+r3_i;

H=cross(R_c ,V_c);
175 nu_dot=norm(H)/(( norm(R_c))^2);

omega_bi_b =(C_bi *[0 0 nu_dot]’)+(C_be *[0 0 alpha_dot ]’)+...
[0 beta_dot 0]’;

v1_i=C_ib *([( rho_dot*sqrt (3)/3) 0 0] ’+ cross(omega_bi_b ,r1_b));
v2_i=C_ib *([-( rho_dot*sqrt (3) /6) ( rho_dot /2) 0] ’+...

180 cross(omega_bi_b ,r2_b));
v3_i=C_ib *([-( rho_dot*sqrt (3) /6) -(rho_dot /2) 0] ’+...

cross(omega_bi_b ,r3_b));
V1_i=V_c ’+v1_i;
V2_i=V_c ’+v2_i;

185 V3_i=V_c ’+v3_i;

State (1:18) =[R1_i; V1_i; R2_i; V2_i; R3_i; V3_i]’;
return;

190 % Propagator
function NewState=RK4(State ,stepsize ,t);

State_dot_temp=EOM(State ,t);
k1=stepsize*State_dot_temp;

195 State_temp=State +(0.5* k1);
State_dot_temp=EOM(State_temp ,t);
k2=stepsize*State_dot_temp;
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State_temp=State +(0.5* k2);
200 State_dot_temp=EOM(State_temp ,t);

k3=stepsize*State_dot_temp;

State_temp=State+k3;
State_dot_temp=EOM(State_temp ,t);

205 k4=stepsize*State_dot_temp;

NewState=State +(k1+(2*k2)+(2*k3)+k4)/6;

return;
210

% Converts Newtonian States to Variables of Interest (VOI)
function [R_c , V_c , r1_f , r2_f , r3_f , h_f , rho_12 , rho_23 , rho_31...

,...
rho_12_dot , rho_23_dot , rho_31_dot ]= State_2_VOI(State);

global m1 m2 m3 mu_damp Re J2 K_spring rho_o mu_earth ...
215 beta_ic pick_f thresh num_firings programmed_rhos;

% position and velocity of COM
R_c=(State (1:3) *(m1/(m1+m2+m3)))+(State (7:9) *...

(m2/(m1+m2+m3)))+(State (13:15) *(m3/(m1+m2+m3)));
V_c=(State (4:6) *(m1/(m1+m2+m3)))+(State (10:12) *...

220 (m2/(m1+m2+m3)))+(State (16:18) *(m3/(m1+m2+m3)));
% position (rel to COM) and velocity of each mass
r1_i=State (1:3) -R_c;
r2_i=State (7:9) -R_c;
r3_i=State (13:15) -R_c;

225 v1_i_i=State (4:6) -V_c;
v2_i_i=State (10:12) -V_c;
v3_i_i=State (16:18) -V_c;
% Define positions in orbit frame (e-frame)
% or stroboscopic frame (s-frame)

230 % or inertial frame (i-frame)
nu=atan2(R_c(2),R_c(1));
C_ei=Rot_3(nu);
r1_f=[C_ei*r1_i ’]’; % default is orbit frame
r2_f=[C_ei*r2_i ’]’;

235 r3_f=[C_ei*r3_i ’]’;
if pick_f == ’s’

C_se=Rot_2(-beta_ic);
r1_f=[C_se*r1_f ’]’;
r2_f=[C_se*r2_f ’]’;

240 r3_f=[C_se*r3_f ’]’;
end
if pick_f == ’i’

r1_f=r1_i;
r2_f=r2_i;

245 r3_f=r3_i;
end
% Calulate system "spin axis " ( local ang mom) in orbit frame
% or stroboscopic frame
% or inertial frame
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250 h1_i_i=m1*cross(r1_i ,v1_i_i);
h2_i_i=m2*cross(r2_i ,v2_i_i);
h3_i_i=m3*cross(r3_i ,v3_i_i);
h_i_i =[ h1_i_i+h2_i_i+h3_i_i]’;
h_i_e=C_ei*h_i_i;

255 h_f=h_i_e ’; % default is orbit frame
if pick_f == ’s’

h_f=[C_se*h_i_e]’;
end
if pick_f == ’i’

260 h_f=h_i_i ’;
end
% Calculate tether lengths (rho ’s) change in
% lengths (rho_dot ’s)
r12=State (7:9) -State (1:3);

265 r23=State (13:15) -State (7:9);
r31=State (1:3) -State (13:15);
rho_12=norm(r12);
rho_23=norm(r23);
rho_31=norm(r31);

270 v21=State (10:12) -State (4:6);
v13=State (4:6) -State (16:18);
v32=State (16:18) -State (10:12);
rho_12_dot=dot(r12 ,v21)/rho_12;
rho_31_dot=dot(r31 ,v13)/rho_31;

275 rho_23_dot=dot(r23 ,v32)/rho_23;
return;

% Equations of Motion
function X_dot=EOM(X,t);

280 global m1 m2 m3 mu_damp Re J2 K_spring rho_o mu_earth ...
beta_ic pick_f thresh num_firings programmed_rhos;

X_dot (1:18)=zeros (1 ,18);
% Velocities
R1_dot=X(4:6);

285 R2_dot=X(10:12);
R3_dot=X(16:18);
% Calculate tether lengths (rho ’s) change in
% lengths (rho_dot ’s)
r12=X(7:9) -X(1:3);

290 r23=X(13:15) -X(7:9);
r31=X(1:3) -X(13:15);
rho_12=norm(r12);
rho_23=norm(r23);
rho_31=norm(r31);

295 v21=X(10:12) -X(4:6);
v13=X(4:6) -X(16:18);
v32=X(16:18) -X(10:12);
rho_12_dot=dot(r12 ,v21)/rho_12;
rho_31_dot=dot(r31 ,v13)/rho_31;

300 rho_23_dot=dot(r23 ,v32)/rho_23;
% Accelerations
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V1_dot =[0 0 0];
V2_dot =[0 0 0];
V3_dot =[0 0 0];

305 % Gravity
V1_dot=V1_dot -(( mu_earth /(( norm(X(1:3)))^3))*X(1:3));
V2_dot=V2_dot -(( mu_earth /(( norm(X(7:9)))^3))*X(7:9));
V3_dot=V3_dot -(( mu_earth /(( norm(X(13:15)))^3))*X(13:15));

310 % Select which forces you want to model by uncommenting below ...

%################### Standard Tether for fixed length ########
if rho_12 >= rho_o % Spring

V1_dot=V1_dot +( K_spring *(rho_12 -rho_o)/(m1*rho_12))*r12;
315 V2_dot=V2_dot -( K_spring *(rho_12 -rho_o)/(m2*rho_12))*r12;

if rho_12_dot >0 % Damper
V1_dot=V1_dot +( mu_damp*rho_12_dot/m1*rho_12)*r12;
V2_dot=V2_dot -( mu_damp*rho_12_dot/m2*rho_12)*r12;

end
320 end

if rho_23 >= rho_o % Spring
V2_dot=V2_dot +( K_spring *(rho_23 -rho_o)/(m2*rho_23))*r23;
V3_dot=V3_dot -( K_spring *(rho_23 -rho_o)/(m3*rho_23))*r23;
if rho_23_dot >0 % Damper

325 V2_dot=V2_dot +( mu_damp*rho_23_dot/m2*rho_23)*r23;
V3_dot=V3_dot -( mu_damp*rho_23_dot/m3*rho_23)*r23;

end
end
if rho_31 >= rho_o % Spring

330 V3_dot=V3_dot +( K_spring *(rho_31 -rho_o)/(m3*rho_31))*r31;
V1_dot=V1_dot -( K_spring *(rho_31 -rho_o)/(m1*rho_31))*r31;
if rho_31_dot >0 % Damper

V3_dot=V3_dot +( mu_damp*rho_31_dot/m3*rho_31)*r31;
V1_dot=V1_dot -( mu_damp*rho_31_dot/m1*rho_31)*r31;

335 end
end

%################### Full Spring for fixed length ############

% Spring
340 V1_dot=V1_dot +( K_spring *(rho_12 -rho_o)/(m1*rho_12))*r12;

V2_dot=V2_dot -( K_spring *(rho_12 -rho_o)/(m2*rho_12))*r12;
% Damper
V1_dot=V1_dot +( mu_damp*rho_12_dot/m1*rho_12)*r12;
V2_dot=V2_dot -( mu_damp*rho_12_dot/m2*rho_12)*r12;

345 % Spring
V2_dot=V2_dot +( K_spring *(rho_23 -rho_o)/(m2*rho_23))*r23;
V3_dot=V3_dot -( K_spring *(rho_23 -rho_o)/(m3*rho_23))*r23;

% Damper
V2_dot=V2_dot +( mu_damp*rho_23_dot/m2*rho_23)*r23;

350 V3_dot=V3_dot -( mu_damp*rho_23_dot/m3*rho_23)*r23;
% Spring
V3_dot=V3_dot +( K_spring *(rho_31 -rho_o)/(m3*rho_31))*r31;
V1_dot=V1_dot -( K_spring *(rho_31 -rho_o)/(m1*rho_31))*r31;
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% Damper
355 V3_dot=V3_dot +( mu_damp*rho_31_dot/m3*rho_31)*r31;

V1_dot=V1_dot -( mu_damp*rho_31_dot/m1*rho_31)*r31;

%################### Tether for a programmed length ###########
% without deadband added

360
if rho_12 >= programmed_rhos(t+1,1) % Spring

V1_dot=V1_dot +( K_spring *(rho_12 -programmed_rhos(t+1,1))...
/...
(m1*rho_12))*r12;

V2_dot=V2_dot -( K_spring *(rho_12 -programmed_rhos(t+1,1))...
/...

365 (m2*rho_12))*r12;
if rho_12_dot >0 % Damper

V1_dot=V1_dot +( mu_damp*rho_12_dot/m1*rho_12)*r12;
V2_dot=V2_dot -( mu_damp*rho_12_dot/m2*rho_12)*r12;

end
370 end

if rho_23 >= programmed_rhos(t+1,2) % Spring
V2_dot=V2_dot +( K_spring *(rho_23 -programmed_rhos(t+1,2))...

/...
(m2*rho_23))*r23;

V3_dot=V3_dot -( K_spring *(rho_23 -programmed_rhos(t+1,2))...
/...

375 (m3*rho_23))*r23;
if rho_23_dot >0 % Damper

V2_dot=V2_dot +( mu_damp*rho_23_dot/m2*rho_23)*r23;
V3_dot=V3_dot -( mu_damp*rho_23_dot/m3*rho_23)*r23;

end
380 end

if rho_31 >= programmed_rhos(t+1,3) % Spring
V3_dot=V3_dot +( K_spring *(rho_31 -programmed_rhos(t+1,3))...

/...
(m3*rho_31))*r31;

V1_dot=V1_dot -( K_spring *(rho_31 -programmed_rhos(t+1,3))...
/...

385 (m1*rho_31))*r31;
if rho_31_dot >0 % Damper

V3_dot=V3_dot +( mu_damp*rho_31_dot/m3*rho_31)*r31;
V1_dot=V1_dot -( mu_damp*rho_31_dot/m1*rho_31)*r31;

end
390 end

%############### Full Spring for a programmed length ##########
% with deadband added

if (abs(rho_12 -programmed_rhos(t+1,1))) >=.00001
395 % Spring

V1_dot=V1_dot +( K_spring *(rho_12 -programmed_rhos(t+1,1))...
/...
(m1*rho_12))*r12;
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V2_dot=V2_dot -( K_spring *(rho_12 -programmed_rhos(t+1,1))...
/...
(m2*rho_12))*r12;

400 % Damper
V1_dot=V1_dot +( mu_damp*rho_12_dot/m1*rho_12)*r12;
V2_dot=V2_dot -( mu_damp*rho_12_dot/m2*rho_12)*r12;

end
if (abs(rho_23 -programmed_rhos(t+1,2))) >=.00001

405 % Spring
V2_dot=V2_dot +( K_spring *(rho_23 -programmed_rhos(t+1,2))...

/...
(m2*rho_23))*r23;

V3_dot=V3_dot -( K_spring *(rho_23 -programmed_rhos(t+1,2))...
/...
(m3*rho_23))*r23;

410 % Damper
V2_dot=V2_dot +( mu_damp*rho_23_dot/m2*rho_23)*r23;
V3_dot=V3_dot -( mu_damp*rho_23_dot/m3*rho_23)*r23;

end
if (abs(rho_31 -programmed_rhos(t+1,3))) >=.00001

415 % Spring
V3_dot=V3_dot +( K_spring *(rho_31 -programmed_rhos(t+1,3))...

/...
(m3*rho_31))*r31;

V1_dot=V1_dot -( K_spring *(rho_31 -programmed_rhos(t+1,3))/(...
m1*rho_31))*r31;
% Damper

420 V3_dot=V3_dot +( mu_damp*rho_31_dot/m3*rho_31)*r31;
V1_dot=V1_dot -( mu_damp*rho_31_dot/m1*rho_31)*r31;

end

425 %################ Thrusters for Compression (fixed length) #####

if rho_12 >= rho_o % Spring
V1_dot=V1_dot +( K_spring *(rho_12 -rho_o)/(m1*rho_12))*r12;
V2_dot=V2_dot -( K_spring *(rho_12 -rho_o)/(m2*rho_12))*r12;

430 if rho_12_dot >0 % Damper
V1_dot=V1_dot +( mu_damp*rho_12_dot/m1*rho_12)*r12;
V2_dot=V2_dot -( mu_damp*rho_12_dot/m2*rho_12)*r12;

end
elseif rho_12 <=(rho_o -1* thresh) % Thruster

435 V1_dot=V1_dot -( K_spring *( thresh)/(m1*rho_12))*r12;
V2_dot=V2_dot +( K_spring *( thresh)/(m2*rho_12))*r12;
num_firings=num_firings +2;

end
if rho_23 >= rho_o % Spring

440 V2_dot=V2_dot +( K_spring *(rho_23 -rho_o)/(m2*rho_23))*r23;
V3_dot=V3_dot -( K_spring *(rho_23 -rho_o)/(m3*rho_23))*r23;
if rho_23_dot >0 % Damper

V2_dot=V2_dot +( mu_damp*rho_23_dot/m2*rho_23)*r23;
V3_dot=V3_dot -( mu_damp*rho_23_dot/m3*rho_23)*r23;
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445 end
elseif rho_23 <=(rho_o -1* thresh) % Thruster

V2_dot=V2_dot -( K_spring *( thresh)/(m2*rho_23))*r23;
V3_dot=V3_dot +( K_spring *( thresh)/(m3*rho_23))*r23;
num_firings=num_firings +2;

450 end
if rho_31 >= rho_o % Spring

V3_dot=V3_dot +( K_spring *(rho_31 -rho_o)/(m3*rho_31))*r31;
V1_dot=V1_dot -( K_spring *(rho_31 -rho_o)/(m1*rho_31))*r31;
if rho_31_dot >0 % Damper

455 V3_dot=V3_dot +( mu_damp*rho_31_dot/m3*rho_31)*r31;
V1_dot=V1_dot -( mu_damp*rho_31_dot/m1*rho_31)*r31;

end
elseif rho_31 <=(rho_o -1* thresh) % Thruster

V3_dot=V3_dot -( K_spring *( thresh)/(m3*rho_31))*r31;
460 V1_dot=V1_dot +( K_spring *( thresh)/(m1*rho_31))*r31;

num_firings=num_firings +2;
end

%#############################################################

465 % ################### Non -Linear Springs ###############
if rho_12 >= rho_o % Spring

V1_dot=V1_dot +( K_spring *((rho_12 -rho_o)^2) /...
(m1*rho_12))*r12;

V2_dot=V2_dot -( K_spring *((rho_12 -rho_o)^2) /...
470 (m2*rho_12))*r12;

if rho_12_dot >0 % Damper
V1_dot=V1_dot +( mu_damp*rho_12_dot/m1*rho_12)*r12;
V2_dot=V2_dot -( mu_damp*rho_12_dot/m2*rho_12)*r12;

end
475 end

if rho_23 >= rho_o % Spring
V2_dot=V2_dot +( K_spring *((rho_23 -rho_o)^2) /...

(m2*rho_23))*r23;
V3_dot=V3_dot -( K_spring *((rho_23 -rho_o)^2) /...

480 (m3*rho_23))*r23;
if rho_23_dot >0 % Damper

V2_dot=V2_dot +( mu_damp*rho_23_dot/m2*rho_23)*r23;
V3_dot=V3_dot -( mu_damp*rho_23_dot/m3*rho_23)*r23;

end
485 end

if rho_31 >= rho_o % Spring
V3_dot=V3_dot +( K_spring *((rho_31 -rho_o)^2) /...

(m3*rho_31))*r31;
V1_dot=V1_dot -( K_spring *((rho_31 -rho_o)^2) /...

490 (m1*rho_31))*r31;
if rho_31_dot >0 % Damper

V3_dot=V3_dot +( mu_damp*rho_31_dot/m3*rho_31)*r31;
V1_dot=V1_dot -( mu_damp*rho_31_dot/m1*rho_31)*r31;

end
495 end

%#############################################################
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%## Individual Variable Length Tethers for constant tension ###
% Note: the main code would need modification to accommodate

500 % this addition . Specifically , independent variable rho values
% would need to be defined and carried globally . This was done
% in a separate code , but the key portion of the model is shown
% here.

if rho_12 >= rho1_o % Spring
505 V1_dot=V1_dot +( K_spring *(rho_12 -rho1_o)/(m1*rho_12))*r12;

V2_dot=V2_dot -( K_spring *(rho_12 -rho1_o)/(m2*rho_12))*r12;
if rho_12_dot >0 % Damper

V1_dot=V1_dot +( mu_damp*rho_12_dot/m1*rho_12)*r12;
V2_dot=V2_dot -( mu_damp*rho_12_dot/m2*rho_12)*r12;

510 end
if ( K_spring *(rho_12 -rho1_o))>=high_tension;

rho1_o=rho1_o+reelout;
end

elseif rho1_o >0
515 rho1_o=rho1_o -reelin;

end
if rho_23 >= rho2_o % Spring

V2_dot=V2_dot +( K_spring *(rho_23 -rho2_o)/(m2*rho_23))*r23;
V3_dot=V3_dot -( K_spring *(rho_23 -rho2_o)/(m3*rho_23))*r23;

520 if rho_23_dot >0 % Damper
V2_dot=V2_dot +( mu_damp*rho_23_dot/m2*rho_23)*r23;
V3_dot=V3_dot -( mu_damp*rho_23_dot/m3*rho_23)*r23;

end
if ( K_spring *(rho_23 -rho2_o))>=high_tension;

525 rho2_o=rho2_o+reelout;
end

elseif rho2_o >0
rho2_o=rho2_o -reelin;

end
530 if rho_31 >= rho3_o % Spring

V3_dot=V3_dot +( K_spring *(rho_31 -rho3_o)/(m3*rho_31))*r31;
V1_dot=V1_dot -( K_spring *(rho_31 -rho3_o)/(m1*rho_31))*r31;
if rho_31_dot >0 % Damper

V3_dot=V3_dot +( mu_damp*rho_31_dot/m3*rho_31)*r31;
535 V1_dot=V1_dot -( mu_damp*rho_31_dot/m1*rho_31)*r31;

end
if ( K_spring *(rho_31 -rho3_o))>=high_tension;

rho3_o=rho3_o+reelout;
end

540 elseif rho3_o >0
rho3_o=rho3_o -reelin;

end
%#############################################################

545 %######################### J2 Perturbation ################

V1_dot (1)=V1_dot (1) -(3*J2*mu_earth *(Re^2)*X(1) *(1 -...
(5*X(3)/(norm(X(1:3))^2)))/(2*(( norm(X(1:3)))^5)));
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V1_dot (2)=V1_dot (2) -(3*J2*mu_earth *(Re^2)*X(2) *(1 -...
550 (5*X(3)/(norm(X(1:3))^2)))/(2*(( norm(X(1:3)))^5)));

V1_dot (3)=V1_dot (3) -(3*J2*mu_earth *(Re^2)*X(3) *(1 -...
(5*X(3)/(norm(X(1:3))^2)))/(2*(( norm(X(1:3)))^5)));

V2_dot (1)=V2_dot (1) -(3*J2*mu_earth *(Re^2)*X(7) *(1 -...
(5*X(9)/(norm(X(7:9))^2)))/(2*(( norm(X(7:9)))^5)));

555 V2_dot (2)=V2_dot (2) -(3*J2*mu_earth *(Re^2)*X(8) *(1 -...
(5*X(9)/(norm(X(7:9))^2)))/(2*(( norm(X(7:9)))^5)));

V2_dot (3)=V2_dot (3) -(3*J2*mu_earth *(Re^2)*X(9) *(1 -...
(5*X(9)/(norm(X(7:9))^2)))/(2*(( norm(X(7:9)))^5)));

V3_dot (1)=V3_dot (1) -(3*J2*mu_earth *(Re^2)*X(13) *(1 -...
560 (5*X(15)/(norm(X(13:15))^2)))/(2*(( norm(X(13:15)))^5)));

V3_dot (2)=V3_dot (2) -(3*J2*mu_earth *(Re^2)*X(14) *(1 -...
(5*X(15)/(norm(X(13:15))^2)))/(2*(( norm(X(13:15)))^5)));

V3_dot (3)=V3_dot (3) -(3*J2*mu_earth *(Re^2)*X(15) *(1 -...
(5*X(15)/(norm(X(13:15))^2)))/(2*(( norm(X(13:15)))^5)));

565 %
X_dot (1:3)=R1_dot;
X_dot (4:6)=V1_dot;
X_dot (7:9)=R2_dot;
X_dot (10:12)=V2_dot;

570 X_dot (13:15)=R3_dot;
X_dot (16:18)=V3_dot;

return;

% Rotation about axis 1
575 function R1=Rot_1(ang);

R1 =[1 0 0;0 cos(ang) sin(ang);0 -sin(ang) cos(ang)];
return;

% Rotation about axis 2
580 function R2=Rot_2(ang);

R2=[cos(ang) 0 -sin(ang);0 1 0; sin(ang) 0 cos(ang)];
return;

% Rotation about axis 3
585 function R3=Rot_3(ang);

R3=[cos(ang) sin(ang) 0;-sin(ang) cos(ang) 0;0 0 1];
return;

Listing F.4: This small routine generates three-body system initial conditions based
on geometric calculations from conical Likins-Pringle rigid-body equilibria.
(appendixf/code/Get3BLPICs.m)

%******************************************************
% Tool for determining L-P IC ’s for a 3 body system
% LtCol Kurt Vogel
% Nov 2005

5 %******************************************************
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disp([’Start of program run ’, datestr(now)]);
clf; clear all; close all;
format long;

10
%******************************************************
% Define constants

global m1 m2 m3 mu_damp K_spring rho_o mu_earth;
15 m1 = 200; % kg

m2 = 200; % kg
m3 = 200; % kg
mu_damp = .05; % kg/s
K_spring = 20; % kg/s^2

20 rho_o = 10.0; % km ( unstretched tether length)
mu_earth = 398600.4415 e0; % km ^3 / sec^2

%******************************************************
% Set initial conditions in Generalized Coords ( assumes

25 % perfect equilateral triangle for initial conditions)

rho_ic = 10.0; % km
alpha_ic = 0 * pi /180.; % deg -> rad
beta_ic = 40 * pi /180; % deg -> rad

30 R_c_ic = [1.1 0 0]*6378.13655; % DU -> km
V_c_ic = [0 sqrt(mu_earth/norm(R_c_ic)) 0]; % km/s
r_ic = rho_ic*sqrt (3) /3;

%******************************************************
35 % Convert to Newtonian State Velocity

H=cross(R_c_ic ,V_c_ic);
nu_dot=norm(H)/(( norm(R_c_ic))^2)
nu_dot_e =[0 0 nu_dot]’;

40 C_be=[cos(-beta_ic) 0 -sin(-beta_ic);0 1 0; sin(-beta_ic)...
0 cos(-beta_ic)];

nu_dot_b=C_be*nu_dot_e;
nu=atan2(R_c_ic (2),R_c_ic (1));
C2=[cos(beta_ic) 0 -sin(beta_ic);0 1 0; sin(beta_ic)...

45 0 cos(beta_ic)];
C3=[cos(-nu) sin(-nu) 0;-sin(-nu) cos(-nu) 0;0 0 1];
C_ib=C3*C2;

error =1;
50 while error >=.00000001

C=(m1+m2+m3)*(r_ic ^2);
A=C/2;

% Standard L-P
55 psi_dot =( nu_dot*cos(beta_ic)*4*(A-C))/C;

% Spin ’er up ( faster than L-P)
% psi_dot =4* nu_dot;
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total_spin=psi_dot+nu_dot_b (3);
60

rho_new=K_spring*rho_o/(K_spring -((( total_spin)^2)*(m1/3)))

r_new=rho_new*sqrt (3) /3;

65 error=abs(r_ic -r_new);
r_ic=r_new;

end

r1_b=[r_ic 0 0] ’;
70 r2_b=[-r_ic /2 r_ic*sqrt (3) /2 0] ’;

r3_b=[-r_ic/2 -r_ic*sqrt (3) /2 0] ’;

omega_bi_b =[0 0 psi_dot]’+nu_dot_b

75 % d/dt of r1_b in b-frame = 0
v1_i=C_ib*( cross(omega_bi_b ,r1_b));
v2_i=C_ib*( cross(omega_bi_b ,r2_b));
v3_i=C_ib*( cross(omega_bi_b ,r3_b));

80 V_1= V_c_ic ’+v1_i; norm(V_1)
V_2= V_c_ic ’+v2_i
V_3= V_c_ic ’+v3_i

85 %******************************************************
% Convert to Newtonian State Position

R_1=R_c_ic ’+( C_ib*r1_b)
R_2=R_c_ic ’+( C_ib*r2_b)

90 R_3=R_c_ic ’+( C_ib*r3_b)

% Period matching
% magV2new=sqrt((norm(V_c_ic)^2) -(2* mu_earth/norm(R_c_ic))+...
% (2* mu_earth/norm(R_2)))

95 % V_2=( magV2new/norm(V_2))*V_2
% V_3=( magV2new/norm(V_3))*V_3
%
% magV1new=sqrt((norm(V_c_ic)^2) -(2* mu_earth/norm(R_c_ic))+...
% (2* mu_earth/norm(R_1)))

100 % V_1=( magV1new/norm(V_1))*V_1; norm(V_1)

%******************************************************
% Save initial state to disk so it can be retrieved by model

105 Initial_State =[R_1;V_1;R_2;V_2;R_3;V_3]’;

spin_ratio=psi_dot/nu_dot

save 3 B_LP_ICs.mat Initial_State rho_ic alpha_ic ...
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110 beta_ic R_c_ic V_c_ic spin_ratio

%******************************************************
% Calculate eccentricities of the individual orbits

115 ecc_1=norm (((( norm(V_1)^2) -(mu_earth /(norm(R_1))))*R_1...
-(dot(R_1 ,V_1)*V_1))./ mu_earth)

ecc_2=norm (((( norm(V_2)^2) -(mu_earth /(norm(R_2))))*R_2...
-(dot(R_2 ,V_2)*V_2))./ mu_earth)

ecc_3=norm (((( norm(V_3)^2) -(mu_earth /(norm(R_3))))*R_3...
120 -(dot(R_3 ,V_3)*V_3))./ mu_earth)

ecc_c=norm (((( norm(V_c_ic)^2) -(mu_earth /(norm(R_c_ic))))...
*R_c_ic -(dot(R_c_ic ,V_c_ic)*V_c_ic))./ mu_earth)

%******************************************************
125 % Calculate Periods of the individual orbits

E1=(( norm(V_1)^2) /2) -(mu_earth /(norm(R_1)))
E2=(( norm(V_2)^2) /2) -(mu_earth /(norm(R_2)))
E3=(( norm(V_3)^2) /2) -(mu_earth /(norm(R_3)));

130 Ec=(( norm(V_c_ic)^2) /2) -(mu_earth /(norm(R_c_ic)));
n1=((-2*E1)^1.5)/mu_earth;
n2=((-2*E2)^1.5)/mu_earth;
n3=((-2*E3)^1.5)/mu_earth;
nc=((-2*Ec)^1.5)/mu_earth;

135 Period_1 =2*pi/n1 %sec
Period_2 =2*pi/n2
Period_3 =2*pi/n3
Period_c =2*pi/nc
delta_Period_21=Period_2 -Period_1

140 delta_Period_1c=Period_1 -Period_c
delta_Period_2c=Period_2 -Period_c
delta_r =(((( Period_2 -Period_1)/(2*pi))^2)*mu_earth)^(1/3)
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